Skip to content

Literature


  1. Philipp Grohs, Hanne Hardering, Oliver Sander, and Markus Sprecher. Projection-based finite elements for nonlinear function spaces. SIAM J Numer Anal, 57(1):404–428, 2019. doi:10.1137/18M1176798

  2. Alexander Müller and Manfred Bischoff. A consistent finite element formulation of the geometrically non-linear reissner-mindlin shell model. Archives of Computational Methods in Engineering, pages 1–47, 2022. doi:10.1007/s11831-021-09702-7

  3. J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with kirchhoff–love elements. Computer Methods in Applied Mechanics and Engineering, 198(49):3902–3914, 2009. doi:10.1016/j.cma.2009.08.013

  4. Oliver Sander. DUNE—The Distributed and Unified Numerics Environment. Volume 140. Springer Nature, 2020. doi:10.1007/978-3-030-59702-3

  5. J. C. Simo and M. S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Engng., 29(8):1595–1638, June 1990. doi:10.1002/nme.1620290802

  6. U. Andelfinger and E. Ramm. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering, 36(8):1311–1337, 1993. doi:10.1002/nme.1620360805

  7. Gerald A. Wempner. Discrete approximations related to nonlinear theories of solids. International Journal of Solids and Structures, 7(11):1581–1599, 1971. doi:10.1016/0020-7683(71)90038-2

  8. M.A. Crisfield. A fast incremental/iterative solution procedure that handles “snap-through”. Computers & Structures, 13(1):55–62, 1981. doi:10.1016/0045-7949(81)90108-5

  9. E. Ramm. Strategies for Tracing the Nonlinear Response Near Limit Points. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors, Nonlinear Finite Element Analysis in Structural Mechanics, pages 63–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981. doi:10.1007/978-3-642-81589-8_5

  10. M. Bischoff and E. Ramm. Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40(23):4427–4449, 1997. doi:10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9

  11. E. Riks. The Application of Newton’s Method to the Problem of Elastic Stability. Journal of Applied Mechanics, 39(4):1060–1065, 1972. doi:10.1115/1.3422829

  12. S. Glaser and F. Armero. On the formulation of enhanced strain finite elements in finite deformations. Engineering Computations, 14(7):759–791, 1997. doi:10.1108/02644409710188664

  13. Robin Pfefferkorn and Peter Betsch. On transformations and shape functions for enhanced assumed strain elements. International Journal for Numerical Methods in Engineering, 120(2):231–261, 2019. doi:10.1002/nme.6133

  14. J. C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 33(7):1413–1449, 1992. doi:10.1002/nme.1620330705

  15. Robert D. Cook. Improved Two-Dimensional Finite Element. J. Struct. Div., 100(9):1851–1863, September 1974. doi:10.1061/JSDEAG.0003877

  16. J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, 2009. 

  17. R. V. Mises. Über die stabilitätsprobleme der elastizitätstheorie. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 3(6):406–422, 1923. doi:10.1002/zamm.19230030602

  18. Oliver Sander. Geodesic finite elements for cosserat rods. International Journal for Numerical Methods in Engineering, 82(13):1645–1670, 2010. doi:10.1002/nme.2814

  19. Stefan Hartmann and Patrizio Neff. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. International Journal of Solids and Structures, 40(11):2767–2791, 2003. doi:10.1016/S0020-7683(03)00086-6

  20. Stefan Hiermaier. Structures under Crash and Impact: Continuum Mechanics, Discretization and Experimental Characterization. Springer, New York, 2010. ISBN 978-0-387-73862-8, 978-1-4419-4479-5. 

  21. Jorgen S. Bergstrom. Mechanics of Solid Polymers: Theory and Computational Modeling. William Andrew, Elsevier, Norwich, NY, 2015. ISBN 978-0-323-31150-2. 

  22. Javier Bonet and Richard D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, 2nd edition, 2008. doi:https://doi.org/10.1017/CBO9780511755446

  23. Simon Bieber. Locking and Hourglassing in Nonlinear Finite Element Technology. PhD thesis, Institut für Baustatik und Baudynamik, Universität Stuttgart, Stuttgart, 2024. 

  24. Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region Methods. Society for Industrial and Applied Mathematics, edition, 2000. URL: https://epubs.siam.org/doi/abs/10.1137/1.9780898719857, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898719857, doi:10.1137/1.9780898719857

  25. Nils Viebahn, Jörg Schröder, and Peter Wriggers. An extension of assumed stress finite elements to a general hyperelastic framework. Advanced Modeling and Simulation in Engineering Sciences, 6(1):9, 2019. URL: https://amses-journal.springeropen.com/articles/10.1186/s40323-019-0133-z, doi:10.1186/s40323-019-0133-z

  26. Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995. 

  27. Martin Reddy. API Design for C++. Elsevier, 2011. 

  28. Scott Meyers. Effective C++: 55 specific ways to improve your programs and designs. Pearson Education, 2005. 

  29. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs, PDF Version. Pearson Education, 1995. 

  30. Robert C Martin. Clean Code. Pearson Education, 2008. 

  31. John K. Ousterhout. A Philosophy of Software Design. Yaknyam Press, 2021. 

  32. Klaus Iglberger. C++ Software Design: Design Principles and Patterns for High-Quality Software. O'Reilly, 2022.