Literature¶
-
Oliver Sander. DUNE—The Distributed and Unified Numerics Environment. Volume 140. Springer Nature, 2020. doi:10.1007/978-3-030-59702-3. ↩
-
Gerald A. Wempner. Discrete approximations related to nonlinear theories of solids. International Journal of Solids and Structures, 7(11):1581–1599, 1971. doi:10.1016/0020-7683(71)90038-2. ↩
-
M.A. Crisfield. A fast incremental/iterative solution procedure that handles “snap-through”. Computers & Structures, 13(1):55–62, 1981. doi:10.1016/0045-7949(81)90108-5. ↩
-
E. Ramm. Strategies for Tracing the Nonlinear Response Near Limit Points. In W. Wunderlich, E. Stein, and K.-J. Bathe, editors, Nonlinear Finite Element Analysis in Structural Mechanics, pages 63–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981. doi:10.1007/978-3-642-81589-8_5. ↩
-
E. Riks. The Application of Newton’s Method to the Problem of Elastic Stability. Journal of Applied Mechanics, 39(4):1060–1065, 1972. doi:10.1115/1.3422829. ↩
-
J. C. Simo and M. S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Engng., 29(8):1595–1638, June 1990. doi:10.1002/nme.1620290802. ↩
-
U. Andelfinger and E. Ramm. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering, 36(8):1311–1337, 1993. doi:10.1002/nme.1620360805. ↩
-
J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, 2009. ↩
-
Philipp Grohs, Hanne Hardering, Oliver Sander, and Markus Sprecher. Projection-based finite elements for nonlinear function spaces. SIAM J Numer Anal, 57(1):404–428, 2019. doi:10.1137/18M1176798. ↩
-
Oliver Sander. Geodesic finite elements for cosserat rods. International Journal for Numerical Methods in Engineering, 82(13):1645–1670, 2010. doi:10.1002/nme.2814. ↩
-
Alexander Müller and Manfred Bischoff. A consistent finite element formulation of the geometrically non-linear reissner-mindlin shell model. Archives of Computational Methods in Engineering, pages 1–47, 2022. doi:10.1007/s11831-021-09702-7. ↩
-
Robert D. Cook. Improved Two-Dimensional Finite Element. J. Struct. Div., 100(9):1851–1863, September 1974. doi:10.1061/JSDEAG.0003877. ↩
-
R. V. Mises. Über die stabilitätsprobleme der elastizitätstheorie. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 3(6):406–422, 1923. doi:10.1002/zamm.19230030602. ↩
-
Robert C Martin. Clean Code. Pearson Education, 2008. ↩
-
John K. Ousterhout. A Philosophy of Software Design. Yaknyam Press, 2021. ↩
-
J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with kirchhoff–love elements. Computer Methods in Applied Mechanics and Engineering, 198(49):3902–3914, 2009. doi:10.1016/j.cma.2009.08.013. ↩
-
Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs, PDF Version. Pearson Education, 1995. ↩
-
Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995. ↩
-
Scott Meyers. Effective C++: 55 specific ways to improve your programs and designs. Pearson Education, 2005. ↩
-
Martin Reddy. API Design for C++. Elsevier, 2011. ↩
-
Klaus Iglberger. C++ Software Design: Design Principles and Patterns for High-Quality Software. O'Reilly, 2022. ↩