13#include <unsupported/Eigen/CXX11/Tensor>
15#include <dune/common/promotiontraits.hh>
31template <
typename Derived,
typename T, auto rank>
33 const std::array<T, rank>& dims) {
34 return Eigen::TensorMap<
const Eigen::TensorFixedSize<
35 const typename Derived::Scalar, Eigen::Sizes<Derived::RowsAtCompileTime, Derived::ColsAtCompileTime>>>(
36 matrix.derived().eval().data(), dims);
47auto dyadic(
const auto& A_ij,
const auto& B_kl) {
48 Eigen::array<Eigen::IndexPair<long>, 0> empty_index_list = {};
49 return A_ij.contract(B_kl, empty_index_list).eval();
59template <
typename ScalarType =
double,
int dim = 3>
61 Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>> idTensor;
62 for (
int i = 0; i < dim; ++i)
63 for (
int j = 0; j < dim; ++j)
64 for (
int k = 0; k < dim; ++k)
65 for (
int l = 0; l < dim; ++l)
66 idTensor(i, j, k, l) = 0.5 * ((i == k) * (j == l) + (i == l) * (j == k));
81template <
typename ScalarType =
double,
int dim = 3>
83 Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>> res;
84 for (
int i = 0; i < dim; ++i)
85 for (
int j = 0; j < dim; ++j)
86 for (
int k = 0; k < dim; ++k)
87 for (
int l = 0; l < dim; ++l)
88 res(i, j, k, l) = 0.5 * (A(i, k) * B(j, l) + A(i, l) * B(j, k));
100template <
typename ScalarType =
double,
int dim = 3>
102 Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>> idTensor;
104 for (
int i = 0; i < dim; ++i)
105 for (
int k = 0; k < dim; ++k)
106 idTensor(i, i, k, k) = 1.0;
121template <
typename AType,
typename BType>
122auto fourthOrderIKJL(
const Eigen::MatrixBase<AType>& A,
const Eigen::MatrixBase<BType>& B) {
123 static_assert(AType::RowsAtCompileTime == BType::RowsAtCompileTime);
124 static_assert(AType::ColsAtCompileTime == BType::ColsAtCompileTime);
125 using ScalarResultType =
typename Dune::PromotionTraits<typename AType::Scalar, typename BType::Scalar>::PromotedType;
126 constexpr int dim = AType::RowsAtCompileTime;
127 Eigen::TensorFixedSize<ScalarResultType, Eigen::Sizes<dim, dim, dim, dim>> res;
128 for (
int i = 0; i < dim; ++i)
129 for (
int j = 0; j < dim; ++j)
130 for (
int k = 0; k < dim; ++k)
131 for (
int l = 0; l < dim; ++l)
132 res(i, j, k, l) = A(i, k) * B(j, l);
144template <
typename ScalarType,
long int dim>
145auto symTwoSlots(
const Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>>& t,
146 const std::array<size_t, 2>& slots) {
147 std::array<size_t, 4> shuffleSlot;
148 std::iota(shuffleSlot.begin(), shuffleSlot.end(), 0);
149 std::swap(shuffleSlot[slots[0]], shuffleSlot[slots[1]]);
150 return (0.5 * (t + t.shuffle(shuffleSlot))).eval();
166constexpr Eigen::Index
toVoigt(Eigen::Index i, Eigen::Index j)
noexcept {
169 if ((i == 1 and j == 2) or (i == 2 and j == 1))
171 if ((i == 0 and j == 2) or (i == 2 and j == 0))
173 if ((i == 0 and j == 1) or (i == 1 and j == 0))
175 assert(i < 3 and j < 3 &&
"For Voigt notation the indices need to be 0,1 or 2.");
176 __builtin_unreachable();
193template <
typename ScalarType =
double>
194Eigen::Matrix<ScalarType, 6, 6>
toVoigt(
const Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<3, 3, 3, 3>>& ft) {
195 Eigen::Matrix<ScalarType, 6, 6> mat;
196 for (Eigen::Index i = 0; i < 3; ++i)
197 for (Eigen::Index j = 0; j < 3; ++j)
198 for (Eigen::Index k = 0; k < 3; ++k)
199 for (Eigen::Index l = 0; l < 3; ++l)
223template <
typename ST,
int size,
int Options,
int maxSize>
224requires((size > 0 and size <= 3) or (maxSize > 0 and maxSize <= 3 and size == Eigen::Dynamic))
225auto toVoigt(
const Eigen::Matrix<ST, size, size, Options, maxSize, maxSize>& E,
bool isStrain =
true) {
226 constexpr bool isFixedSized = (size != Eigen::Dynamic);
227 const ST possibleStrainFactor = isStrain ? 2.0 : 1.0;
229 const size_t inputSize = isFixedSized ? size : E.rows();
230 auto EVoigt = [&]() {
231 if constexpr (isFixedSized) {
232 Eigen::Vector<ST, (size * (size + 1)) / 2> EVoigt;
233 EVoigt.template head<size>() = E.diagonal();
236 Eigen::Matrix<ST, Eigen::Dynamic, 1, Options, 6, 1> EVoigt;
237 EVoigt.resize((inputSize * (inputSize + 1)) / 2);
238 EVoigt.template head(inputSize) = E.diagonal();
244 EVoigt(2) = E(0, 1) * possibleStrainFactor;
245 else if (inputSize == 3) {
246 EVoigt(inputSize) = E(1, 2) * possibleStrainFactor;
247 EVoigt(inputSize + 1) = E(0, 2) * possibleStrainFactor;
248 EVoigt(inputSize + 2) = E(0, 1) * possibleStrainFactor;
268template <
typename ST,
int size,
int Options,
int maxSize>
269requires((size == 1 or size == 3 or size == 6) or
270 ((maxSize == 1 or maxSize == 3 or maxSize == 6) and size ==
Eigen::Dynamic))
271auto
fromVoigt(const
Eigen::Matrix<ST, size, 1, Options, maxSize, 1>& EVoigt,
bool isStrain = true) {
272 constexpr bool isFixedSized = (size != Eigen::Dynamic);
273 const ST possibleStrainFactor = isStrain ? 0.5 : 1.0;
275 const size_t inputSize = isFixedSized ? size : EVoigt.size();
276 const size_t matrixSize =
277 isFixedSized ? (-1 +
ct_sqrt(1 + 8 * size)) / 2 : (-1 +
static_cast<int>(std::sqrt(1 + 8 * inputSize))) / 2;
280 if constexpr (isFixedSized) {
281 Eigen::Matrix<ST, matrixSize, matrixSize> E;
282 E.diagonal() = EVoigt.template head<matrixSize>();
285 Eigen::Matrix<ST, Eigen::Dynamic, Eigen::Dynamic, Options, 3, 3> E;
286 E.resize(matrixSize, matrixSize);
287 E.diagonal() = EVoigt.template head(matrixSize);
292 if (matrixSize == 2) {
293 E(0, 1) = E(1, 0) = EVoigt(2) * possibleStrainFactor;
294 }
else if (matrixSize == 3) {
295 E(2, 1) = E(1, 2) = EVoigt(matrixSize) * possibleStrainFactor;
296 E(2, 0) = E(0, 2) = EVoigt(matrixSize + 1) * possibleStrainFactor;
297 E(1, 0) = E(0, 1) = EVoigt(matrixSize + 2) * possibleStrainFactor;
326 assert(i < 6 &&
"For Voigt notation the indices need to be 0 and 5.");
327 __builtin_unreachable();
342template <
typename ScalarType>
343auto fromVoigt(
const Eigen::Matrix<ScalarType, 6, 6>& CVoigt) {
344 Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<3, 3, 3, 3>> C;
346 for (
size_t i = 0; i < 6; ++i) {
347 for (
size_t j = 0; j < 6; ++j) {
350 C(firstIndices[0], firstIndices[1], secondIndices[0], secondIndices[1]) = CVoigt(i, j);
366template <
typename Geometry>
368 const auto& referenceElement = Dune::ReferenceElements<double, 2>::general(geometry.type());
369 const auto quadPos0 = referenceElement.position(0, 0);
371 const auto jacobianinvT0 = toEigen(geometry.jacobianInverseTransposed(quadPos0));
372 const auto detJ0 = geometry.integrationElement(quadPos0);
374 auto jaco = (jacobianinvT0).inverse().eval();
375 auto J11 = jaco(0, 0);
376 auto J12 = jaco(0, 1);
377 auto J21 = jaco(1, 0);
378 auto J22 = jaco(1, 1);
381 { J11 * J11, J12 * J12, J11 * J12},
382 { J21 * J21, J22 * J22, J21 * J22},
383 {2.0 * J11 * J21, 2.0 * J12 * J22, J21 * J12 + J11 * J22}
386 return T0.inverse() * detJ0;
399template <
typename Geometry>
401 const auto& referenceElement = Dune::ReferenceElements<double, 3>::general(geometry.type());
402 const auto quadPos0 = referenceElement.position(0, 0);
404 const auto jacobianinvT0 = toEigen(geometry.jacobianInverseTransposed(quadPos0));
405 const auto detJ0 = geometry.integrationElement(quadPos0);
407 auto jaco = (jacobianinvT0).inverse().eval();
408 auto J11 = jaco(0, 0);
409 auto J12 = jaco(0, 1);
410 auto J13 = jaco(0, 2);
411 auto J21 = jaco(1, 0);
412 auto J22 = jaco(1, 1);
413 auto J23 = jaco(1, 2);
414 auto J31 = jaco(2, 0);
415 auto J32 = jaco(2, 1);
416 auto J33 = jaco(2, 2);
419 Eigen::Matrix<double, 6, 6> T0 {
420 {J11 * J11, J12 * J12, J13 * J13, J11 * J12, J11 * J13, J12 * J13},
421 {J21 * J21, J22 * J22, J23 * J23, J21 * J22, J21 * J23, J22 * J23},
422 {J31 * J31, J32 * J32, J33 * J33, J31 * J32, J31 * J33, J32 * J33},
423 {2.0 * J11 * J21, 2.0 * J12 * J22, 2.0 * J13 * J23, J11 * J22 + J21 * J12, J11 * J23 + J21 * J13, J12 * J23 + J22 * J13},
424 {2.0 * J11 * J31, 2.0 * J12 * J32, 2.0 * J13 * J33, J11 * J32 + J31 * J12, J11 * J33 + J31 * J13, J12 * J33 + J32 * J13},
425 {2.0 * J31 * J21, 2.0 * J32 * J22, 2.0 * J33 * J23, J31 * J22 + J21 * J32, J31 * J23 + J21 * J33, J32 * J23 + J22 * J33}
429 return T0.inverse() * detJ0;
Implementation of math related algorithms.
auto symmetricIdentityFourthOrder()
Generates a symmetric identity fourth-order tensor.
Definition: tensorutils.hh:60
auto symmetricFourthOrder(const auto &A, const auto &B)
Generates a symmetric fourth-order tensor based on two second-order input tensors.
Definition: tensorutils.hh:82
constexpr Eigen::Index toVoigt(Eigen::Index i, Eigen::Index j) noexcept
Converts 2D indices to Voigt notation index.
Definition: tensorutils.hh:166
Eigen::Tensor< typename Derived::Scalar, rank > tensorView(const Eigen::EigenBase< Derived > &matrix, const std::array< T, rank > &dims)
View an Eigen matrix as an Eigen Tensor with specified dimensions.
Definition: tensorutils.hh:32
auto fourthOrderIKJL(const Eigen::MatrixBase< AType > &A, const Eigen::MatrixBase< BType > &B)
Computes the IKJL product of two matrices.
Definition: tensorutils.hh:122
auto dyadic(const auto &A_ij, const auto &B_kl)
Computes the dyadic product of two Eigen tensors.
Definition: tensorutils.hh:47
auto identityFourthOrder()
Generates an identity fourth-order tensor.
Definition: tensorutils.hh:101
auto fromVoigt(const Eigen::Matrix< ST, size, 1, Options, maxSize, 1 > &EVoigt, bool isStrain=true)
Converts a vector given in Voigt notation to a matrix.
Definition: tensorutils.hh:271
auto symTwoSlots(const Eigen::TensorFixedSize< ScalarType, Eigen::Sizes< dim, dim, dim, dim > > &t, const std::array< size_t, 2 > &slots)
Creates a symmetric fourth-order tensor in the two specified slots of the input tensor.
Definition: tensorutils.hh:145
Definition: assemblermanipulatorbuildingblocks.hh:22
Eigen::Matrix3d calcTransformationMatrix2D(const Geometry &geometry)
Calculates the 2D transformation matrix.
Definition: tensorutils.hh:367
Eigen::Matrix< double, 6, 6 > calcTransformationMatrix3D(const Geometry &geometry)
Calculates the 3D transformation matrix.
Definition: tensorutils.hh:400
constexpr T ct_sqrt(T x)
Compile-time square root for integer types.
Definition: math.hh:47
Definition: truncatedconjugategradient.hh:24
Definition: concepts.hh:30