version 0.4.1
functionsanitychecks.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
9#pragma once
10
11#include <type_traits>
12
13#include <dune/common/float_cmp.hh>
14#include <dune/functions/common/signature.hh>
15
16#include <spdlog/spdlog.h>
17
19
20namespace Ikarus::utils {
21namespace Impl {
31 double drawResultAndReturnSlope(std::string&& functionName, const std::function<double(double)>& ftfunc, bool draw,
32 int slopeOfReference);
33} // namespace Impl
38{
39 bool draw = true;
41 double tolerance = 1e-2;
42};
43
57template <typename F, typename UF = UpdateDefault>
58bool checkGradient(F& f, const typename F::Domain& p, CheckFlags checkFlags = CheckFlags(),
59 UF&& p_updateFunction = {}) {
60 auto x = p;
61 auto gradF = derivative(f);
62 const auto e = f(x);
63 decltype(auto) g = gradF(x);
64 using UpdateType = std::remove_cvref_t<decltype(g)>;
65
66 UpdateType b;
67 if constexpr (not std::is_floating_point_v<UpdateType>) {
68 b.resizeLike(g);
69 b.setRandom();
70 b /= b.norm();
71 } else
72 b = 1;
73
74 double gradfv;
75 if constexpr (not std::is_floating_point_v<UpdateType>)
76 gradfv = g.dot(b);
77 else
78 gradfv = g * b;
79
80 auto ftfunc = [&](auto t) {
81 p_updateFunction(x, t * b);
82 const auto ept = f(x);
83 auto value = std::abs(ept - e - t * gradfv);
84 p_updateFunction(x, -t * b);
85 return value;
86 };
87
88 const double slope = Impl::drawResultAndReturnSlope("Gradient", ftfunc, checkFlags.draw, 2);
89
90 const bool checkPassed = Dune::FloatCmp::le(2.0, slope, checkFlags.tolerance);
91
92 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
93 spdlog::info("Gradient check:");
94 spdlog::info("The slope should be 2. It seems to be {}.", slope);
95 if (checkPassed)
96 spdlog::info("We consider this as sufficient.");
97 else
98 spdlog::info("The gradient seems wrong.");
99 }
100
101 return checkPassed;
102}
103
117template <typename F, typename UF = UpdateDefault>
118bool checkJacobian(F& f, const typename F::Domain& p, CheckFlags checkFlags = CheckFlags(),
119 UF&& p_updateFunction = {}) {
120 auto x = p;
121
122 auto gradF = derivative(f);
123 const auto e = f(x);
124 decltype(auto) g = gradF(x);
125 using UpdateType =
126 std::conditional_t<F::nDerivatives == 2, std::remove_cvref_t<decltype(g)>, std::remove_cvref_t<decltype(e)>>;
127
128 UpdateType b;
129 b.resizeLike(g.col(0));
130 b.setRandom();
131 b /= b.norm();
132
133 const auto jacofv = (g * b).eval();
134
135 auto ftfunc = [&](auto t) {
136 p_updateFunction(x, t * b);
137 const auto etb = f(x);
138 auto value = (etb - e - t * jacofv).norm();
139 p_updateFunction(x, -t * b);
140 return value;
141 };
142
143 const double slope = Impl::drawResultAndReturnSlope("Jacobian", ftfunc, checkFlags.draw, 2);
144
145 const bool checkPassed = Dune::FloatCmp::le(2.0, slope, checkFlags.tolerance);
146
147 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
148 spdlog::info("Jacobian check:");
149 spdlog::info("The slope should be 2. It seems to be {}.", slope);
150 if (checkPassed)
151 spdlog::info("We consider this as sufficient.");
152 else
153 spdlog::info("The Jacobian seems wrong.");
154 }
155 return checkPassed;
156}
157
171template <typename F, typename UF = UpdateDefault>
172bool checkHessian(F& f, const typename F::Domain& p, CheckFlags checkFlags = CheckFlags(), UF&& p_updateFunction = {}) {
173 auto x = p;
174 auto gradF = derivative(f);
175 auto hessF = derivative(gradF);
176 const auto e = f(x);
177 decltype(auto) g = gradF(x);
178 decltype(auto) h = hessF(x);
179 using UpdateType = std::remove_cvref_t<decltype(g)>;
180 UpdateType b;
181
182 if constexpr (not std::is_floating_point_v<UpdateType>) {
183 b.resizeLike(g);
184 b.setRandom();
185 b /= b.norm();
186 } else
187 b = 1;
188
189 double gradfv, vhessv;
190 if constexpr (not std::is_floating_point_v<UpdateType>) {
191 gradfv = g.dot(b);
192 vhessv = (h * b).dot(b);
193 } else {
194 gradfv = g * b;
195 vhessv = h * b * b;
196 }
197
198 auto ftfunc = [&](auto t) {
199 p_updateFunction(x, t * b);
200 const auto etb = f(x);
201 auto value = std::abs(etb - e - t * gradfv - 0.5 * t * t * vhessv);
202 p_updateFunction(x, -t * b);
203 return value;
204 };
205
206 const double slope = Impl::drawResultAndReturnSlope("Hessian", ftfunc, checkFlags.draw, 3);
207
208 const bool checkPassed = Dune::FloatCmp::le(3.0, slope, checkFlags.tolerance);
209
210 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
211 spdlog::info("Hessian check:");
212 spdlog::info("The slope should be 3. It seems to be {}.", slope);
213 if (checkPassed)
214 spdlog::info("We consider this as sufficient.");
215 else
216 spdlog::info("The Hessian seems wrong.");
217 }
218 return checkPassed;
219}
220} // namespace Ikarus::utils
Collection of fallback default functions.
void draw(const GV &gridView, bool forever=false)
Draw function for visualizing the elements of a DUNE grid view.
Definition: griddrawer.hh:31
auto norm(const Eigen::MatrixBase< Derived > &v)
Adding free norm function to Eigen types.
Definition: linearalgebrahelper.hh:259
bool checkGradient(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the gradient of a differentiable Functions.
Definition: functionsanitychecks.hh:58
bool checkJacobian(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the Jacobian of a differentiable Functions.
Definition: functionsanitychecks.hh:118
bool checkHessian(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the Hessian of a differentiable Functions.
Definition: functionsanitychecks.hh:172
Definition: algorithms.hh:17
Struct to hold flags for function checks.
Definition: functionsanitychecks.hh:38
bool draw
Definition: functionsanitychecks.hh:39
double tolerance
Definition: functionsanitychecks.hh:41
bool writeSlopeStatementIfFailed
Definition: functionsanitychecks.hh:40