13#include <dune/common/float_cmp.hh>
14#include <dune/functions/common/signature.hh>
16#include <spdlog/spdlog.h>
31 double drawResultAndReturnSlope(std::string&& functionName,
const std::function<
double(
double)>& ftfunc,
bool draw,
32 int slopeOfReference);
57template <
typename F,
typename UF = UpdateDefault>
59 UF&& p_updateFunction = {}) {
61 auto gradF = derivative(f);
63 decltype(
auto) g = gradF(x);
64 using UpdateType = std::remove_cvref_t<
decltype(g)>;
67 if constexpr (not std::is_floating_point_v<UpdateType>) {
75 if constexpr (not std::is_floating_point_v<UpdateType>)
80 auto ftfunc = [&](
auto t) {
81 p_updateFunction(x, t * b);
82 const auto ept = f(x);
83 auto value = std::abs(ept - e - t * gradfv);
84 p_updateFunction(x, -t * b);
88 const double slope = Impl::drawResultAndReturnSlope(
"Gradient", ftfunc, checkFlags.draw, 2);
90 const bool checkPassed = Dune::FloatCmp::le(2.0, slope, checkFlags.tolerance);
92 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
93 spdlog::info(
"Gradient check:");
94 spdlog::info(
"The slope should be 2. It seems to be {}.", slope);
96 spdlog::info(
"We consider this as sufficient.");
98 spdlog::info(
"The gradient seems wrong.");
117template <
typename F,
typename UF = UpdateDefault>
119 UF&& p_updateFunction = {}) {
122 auto gradF = derivative(f);
124 decltype(
auto) g = gradF(x);
126 std::conditional_t<F::nDerivatives == 2, std::remove_cvref_t<
decltype(g)>, std::remove_cvref_t<
decltype(e)>>;
129 b.resizeLike(g.col(0));
133 const auto jacofv = (g * b).eval();
135 auto ftfunc = [&](
auto t) {
136 p_updateFunction(x, t * b);
137 const auto etb = f(x);
138 auto value = (etb - e - t * jacofv).
norm();
139 p_updateFunction(x, -t * b);
143 const double slope = Impl::drawResultAndReturnSlope(
"Jacobian", ftfunc, checkFlags.draw, 2);
145 const bool checkPassed = Dune::FloatCmp::le(2.0, slope, checkFlags.tolerance);
147 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
148 spdlog::info(
"Jacobian check:");
149 spdlog::info(
"The slope should be 2. It seems to be {}.", slope);
151 spdlog::info(
"We consider this as sufficient.");
153 spdlog::info(
"The Jacobian seems wrong.");
171template <
typename F,
typename UF = UpdateDefault>
174 auto gradF = derivative(f);
175 auto hessF = derivative(gradF);
177 decltype(
auto) g = gradF(x);
178 decltype(
auto) h = hessF(x);
179 using UpdateType = std::remove_cvref_t<
decltype(g)>;
182 if constexpr (not std::is_floating_point_v<UpdateType>) {
189 double gradfv, vhessv;
190 if constexpr (not std::is_floating_point_v<UpdateType>) {
192 vhessv = (h * b).dot(b);
198 auto ftfunc = [&](
auto t) {
199 p_updateFunction(x, t * b);
200 const auto etb = f(x);
201 auto value = std::abs(etb - e - t * gradfv - 0.5 * t * t * vhessv);
202 p_updateFunction(x, -t * b);
206 const double slope = Impl::drawResultAndReturnSlope(
"Hessian", ftfunc, checkFlags.draw, 3);
208 const bool checkPassed = Dune::FloatCmp::le(3.0, slope, checkFlags.tolerance);
210 if (checkFlags.writeSlopeStatementIfFailed and not checkPassed) {
211 spdlog::info(
"Hessian check:");
212 spdlog::info(
"The slope should be 3. It seems to be {}.", slope);
214 spdlog::info(
"We consider this as sufficient.");
216 spdlog::info(
"The Hessian seems wrong.");
Collection of fallback default functions.
void draw(const GV &gridView, bool forever=false)
Draw function for visualizing the elements of a DUNE grid view.
Definition: griddrawer.hh:31
auto norm(const Eigen::MatrixBase< Derived > &v)
Adding free norm function to Eigen types.
Definition: linearalgebrahelper.hh:259
bool checkGradient(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the gradient of a differentiable Functions.
Definition: functionsanitychecks.hh:58
bool checkJacobian(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the Jacobian of a differentiable Functions.
Definition: functionsanitychecks.hh:118
bool checkHessian(F &f, const typename F::Domain &p, CheckFlags checkFlags=CheckFlags(), UF &&p_updateFunction={})
Checks the Hessian of a differentiable Functions.
Definition: functionsanitychecks.hh:172
Definition: algorithms.hh:17
Struct to hold flags for function checks.
Definition: functionsanitychecks.hh:38
bool draw
Definition: functionsanitychecks.hh:39
double tolerance
Definition: functionsanitychecks.hh:41
bool writeSlopeStatementIfFailed
Definition: functionsanitychecks.hh:40