version 0.4.1
trustregion.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
9#pragma once
10
11#include <iosfwd>
12#include <type_traits>
13
14#include <dune/common/float_cmp.hh>
15#include <dune/functions/common/signature.hh>
16
17#include <spdlog/spdlog.h>
18
19#include <Eigen/Sparse>
20
29
30namespace Ikarus {
31
37{
41};
42
44{
45 int verbosity = 5;
46 double maxtime = std::numeric_limits<double>::infinity();
47 int minIter = 3;
48 int maxIter = 1000;
49 int debug = 0;
50 double grad_tol = 1e-6;
51 double corr_tol = 1e-6;
52 double rho_prime = 0.01;
53 bool useRand = false;
54 double rho_reg = 1e6;
55 double Delta_bar = std::numeric_limits<double>::infinity();
56 double Delta0 = 10;
57};
58
64template <PreConditioner preConditioner = PreConditioner::IncompleteCholesky, typename UF = utils::UpdateDefault>
66{
67 static_assert(std::copy_constructible<UF>,
68 " The update function should be copy constructable. If it is a lambda wrap it in a std::function");
69
70 using UpdateFunction = UF;
71
73 static constexpr PreConditioner preConditionerType = preConditioner;
75 template <typename UF2>
78 .updateFunction = std::forward<UF2>(updateFunction)};
79 return settings;
80 }
81};
82
83template <typename F, PreConditioner preConditioner = PreConditioner::IncompleteCholesky,
84 typename UF = utils::UpdateDefault>
85class TrustRegion;
86
95template <typename F, typename TRConfig>
96requires traits::isSpecializationNonTypeAndTypes<TrustRegionConfig, std::remove_cvref_t<TRConfig>>::value
97auto createNonlinearSolver(TRConfig&& config, F&& f) {
98 static constexpr PreConditioner preConditioner = std::remove_cvref_t<TRConfig>::preConditionerType;
99 using UF = std::remove_cvref_t<TRConfig>::UpdateFunction;
100 static_assert(std::remove_cvref_t<F>::nDerivatives == 2,
101 "The number of derivatives in the DifferentiableFunction have to be exactly 2.");
102 auto solver = std::make_shared<TrustRegion<F, preConditioner, UF>>(f, std::forward<TRConfig>(config).updateFunction);
103
104 solver->setup(config.parameters);
105 return solver;
106}
107
112enum class StopReason
113{
119};
120
126{
130 std::string stopReasonString;
131 std::string trstr;
132 std::string accstr;
134 std::string cauchystr = " ";
136 bool used_cauchy = false;
138 std::string reasonString;
139};
140
145struct Stats
146{
147 double gradNorm{1};
148 double etaNorm{1};
149 double time{0};
150 double energy{0};
151 double energyProposal{0};
152 double rho{0};
153 int outerIter{0};
155};
156
169template <typename F, PreConditioner preConditioner, typename UF>
171// template <typename NLO, PreConditioner preConditioner, typename UF>
172// class TrustRegion : public NonlinearSolverBase<NLO>
173{
174public:
176
177 using FTraits = typename F::Traits;
178 using Domain = typename FTraits::Domain;
179 using CorrectionType = typename FTraits::template Range<1>;
180 using UpdateFunction = UF;
182
183 using EnergyType = typename FTraits::template Range<0>;
184 using GradientType = typename FTraits::template Range<1>;
185 using HessianType = typename FTraits::template Range<2>;
186
192 template <typename UF2 = UF>
193 explicit TrustRegion(const F& f, UF2&& updateFunction = {})
194 : energyFunction_{f},
195 updateFunction_{std::forward<UF2>(updateFunction)} {}
196
201 void setup(const Settings& settings) {
202 settings_ = settings;
203 assert(settings_.rho_prime < 0.25 && "options.rho_prime must be strictly smaller than 1/4.");
204 assert(settings_.Delta_bar > 0 && "options.Delta_bar must be positive.");
205 assert(settings_.Delta0 > 0 && settings_.Delta0 < settings_.Delta_bar &&
206 "options.Delta0 must be positive and smaller than Delta_bar.");
207 }
208
215 this->notify(NonLinearSolverMessages::INIT);
216 stats_ = Stats{};
217 info_ = AlgoInfo{};
218
219 NonLinearSolverInformation solverInformation;
220 auto& energyF = energyFunction_;
221 auto gradientF = derivative(energyF);
222 auto hessianF = derivative(gradientF);
223 decltype(auto) e = energyF(x);
224 decltype(auto) g = gradientF(x);
225 decltype(auto) h = hessianF(x);
226
227 eta_.resizeLike(g);
228 Heta_.resizeLike(g);
229 truncatedConjugateGradient_.analyzePattern(h);
230 stats_.energy = e;
231 stats_.gradNorm = norm(g);
232 truncatedConjugateGradient_.analyzePattern(h);
233
234 auto solverState = typename TrustRegion::State{.domain = x, .correction = eta_};
235
236 innerInfo_.Delta = settings_.Delta0;
237 spdlog::info(
238 " | iter | inner_i | rho | energy | energy_p | energy_inc | norm(g) | Delta | norm(corr) | "
239 "InnerBreakReason");
240 spdlog::info("{:-^143}", "-");
241 while (not stoppingCriterion(e)) {
243 if (settings_.useRand) {
244 if (stats_.outerIter == 0) {
245 eta_.setRandom();
246 while (eta_.dot(h * eta_) > innerInfo_.Delta * innerInfo_.Delta)
247 eta_ *= eps_; // eps is sqrt(sqrt(maschine-precision))
248 } else
249 eta_.setZero();
250 } else
251 eta_.setZero();
252
253 solveInnerProblem(g, h);
254 stats_.innerIterSum += innerInfo_.numInnerIter;
255
256 info_.stopReasonString = tcg_stop_reason_[static_cast<int>(innerInfo_.stop_tCG)];
257 Heta_ = h * eta_;
258 if (settings_.useRand and stats_.outerIter == 0) {
259 info_.used_cauchy = false;
260 info_.randomPredictionString = " Used Random correction predictor";
261 info_.cauchystr = " ";
262 double tauC;
263 // Check the curvature
264 const Eigen::VectorXd Hg = h * g;
265 const auto g_Hg = g.dot(Hg);
266 if (g_Hg <= 0)
267 tauC = 1;
268 else
269 tauC = std::min(Dune::power(stats_.gradNorm, 3) / (innerInfo_.Delta * g_Hg), 1.0);
270
271 // generate the Cauchy point.
272 const Eigen::VectorXd etaC = -tauC * innerInfo_.Delta / stats_.gradNorm * g;
273 const Eigen::VectorXd HetaC = -tauC * innerInfo_.Delta / stats_.gradNorm * Hg;
274
275 const double mdle = stats_.energy + g.dot(eta_) + .5 * Heta_.dot(eta_);
276 const double mdlec = stats_.energy + g.dot(etaC) + .5 * HetaC.dot(etaC);
277 if (mdlec < mdle && stats_.outerIter == 0) {
278 eta_ = etaC;
279 Heta_ = HetaC;
280 info_.used_cauchy = true;
281
282 info_.cauchystr = " USED CAUCHY POINT!";
283 }
284 } else
285 info_.cauchystr = " ";
286
287 stats_.etaNorm = eta_.norm();
288
289 updateFunction_(x, eta_);
290
291 // Calculate energy of our proposed update step
292 e = energyF(x);
293 stats_.energyProposal = e;
294
295 // Will we accept the proposal or not?
296 // Check the performance of the quadratic model against the actual energy.
297 auto rhonum = stats_.energy - stats_.energyProposal;
298 auto rhoden = -eta_.dot(g + 0.5 * Heta_);
299
300 /* Close to convergence the proposed energy and the real energy almost coincide.
301 * Therefore, the performance check of our model becomes ill-conditioned
302 * The regularisation fixes this */
303 const auto rhoReg = std::max(1.0, abs(stats_.energy)) * eps_ * settings_.rho_reg;
304 rhonum = rhonum + rhoReg;
305 rhoden = rhoden + rhoReg;
306
307 const bool modelDecreased = rhoden > 0.0;
308
309 if (!modelDecreased)
310 info_.stopReasonString.append(", model did not decrease");
311
312 stats_.rho = rhonum / rhoden;
313 stats_.rho = stats_.rho < 0.0 ? -1.0 : stats_.rho; // move rho to the domain [-1.0,inf]
314
315 info_.trstr = " ";
316
317 // measure if energy decreased
318 const bool energyDecreased = Dune::FloatCmp::ge(stats_.energy - stats_.energyProposal, -1e-12);
319
320 // If the model behaves badly or if the energy increased we reduce the trust region size
321 if (stats_.rho < 1e-4 || not modelDecreased || std::isnan(stats_.rho) || not energyDecreased) {
322 info_.trstr = "TR-";
323 innerInfo_.Delta /= 4.0;
324 info_.consecutive_TRplus = 0;
325 info_.consecutive_TRminus++;
326 if (info_.consecutive_TRminus >= 5 && settings_.verbosity >= 1) {
327 info_.consecutive_TRminus = -std::numeric_limits<int>::infinity();
328 spdlog::info(" +++ Detected many consecutive TR- (radius decreases).");
329 spdlog::info(" +++ Consider decreasing options.Delta_bar by an order of magnitude.");
330 }
331
332 } else if (stats_.rho > 0.99 && (innerInfo_.stop_tCG == Eigen::TCGStopReason::negativeCurvature ||
334 info_.trstr = "TR+";
335 innerInfo_.Delta = std::min(3.5 * innerInfo_.Delta, settings_.Delta_bar);
336 info_.consecutive_TRminus = 0;
337 info_.consecutive_TRplus++;
338 if (info_.consecutive_TRplus >= 5 && settings_.verbosity >= 1) {
339 info_.consecutive_TRplus = -std::numeric_limits<int>::infinity();
340 spdlog::info(" +++ Detected many consecutive TR+ (radius increases)");
341 spdlog::info(" +++ Consider increasing options.Delta_bar by an order of magnitude");
342
343 } else {
344 info_.consecutive_TRplus = 0;
345 info_.consecutive_TRminus = 0;
346 }
347 }
348
349 if (modelDecreased && stats_.rho > settings_.rho_prime && energyDecreased) {
350 if (stats_.energyProposal > stats_.energy)
351 spdlog::info(
352 "Energy function increased by {} (step size: {}). Since this is small we accept the step and hope for "
353 "convergence of the gradient norm.",
354 stats_.energyProposal - stats_.energy, stats_.etaNorm);
355
356 info_.acceptProposal = true;
357 info_.accstr = "acc";
358 info_.consecutive_Rejected = 0;
359 } else {
360 info_.acceptProposal = false;
361 info_.accstr = "REJ";
362
363 if (info_.consecutive_Rejected >= 5)
364 innerInfo_.Delta /= 2;
365 else
366 innerInfo_.Delta = std::min(innerInfo_.Delta, stats_.etaNorm / 2.0);
367 ++info_.consecutive_Rejected;
368 }
369
370 stats_.outerIter++;
371
372 if (settings_.verbosity == 1)
373 logState();
374
375 info_.randomPredictionString = "";
376
377 solverState.dNorm = stats_.etaNorm;
378 solverState.rNorm = stats_.gradNorm;
379 this->notify(NonLinearSolverMessages::CORRECTION_UPDATED, solverState);
380
381 if (info_.acceptProposal) {
382 stats_.energy = stats_.energyProposal;
386 } else {
387 updateFunction_(x, -eta_);
388 eta_.setZero();
389 }
390 e = energyF(x);
391 g = gradientF(x);
392 h = hessianF(x);
393 stats_.gradNorm = g.norm();
395 }
396 spdlog::info("{}", info_.reasonString);
397 spdlog::info("Total iterations: {} Total CG Iterations: {}", stats_.outerIter, stats_.innerIterSum);
398
399 solverInformation.success =
401
402 solverInformation.iterations = stats_.outerIter;
403 solverInformation.residualNorm = stats_.gradNorm;
404 if (solverInformation.success)
405 this->notify(NonLinearSolverMessages::FINISHED_SUCESSFULLY, solverInformation.iterations);
406 return solverInformation;
407 }
412 auto& energy() { return energyFunction_; }
413
418 auto residual() { return derivative(energyFunction_); }
419
420private:
421 template <class T>
422 constexpr auto make_optional_reference(T& value) {
423 return std::make_optional<std::reference_wrapper<const T>>(std::cref(value));
424 }
425
426 template <class T>
427 requires(not std::is_lvalue_reference_v<T>)
428 constexpr T make_optional_reference(T&& value) {
429 return value;
430 }
431
432 void logState() const {
433 spdlog::info(
434 "{:>3s} {:>3s} {:>6d} {:>9d} {:>6.2f} {:>9.2e} {:>9.2e} {:>11.2e} {:>9.2e} {:>9.2e} {:>11.2e} "
435 "{:<73}",
436 info_.accstr, info_.trstr, stats_.outerIter, innerInfo_.numInnerIter, stats_.rho, stats_.energy,
437 stats_.energyProposal, stats_.energyProposal - stats_.energy, stats_.gradNorm, innerInfo_.Delta, stats_.etaNorm,
439 }
440
441 void logFinalState() {
442 spdlog::info("{:>3s} {:>3s} {:>6d} {:>9d} {: ^6} {: ^9} {: ^9} {: ^11} {:>9.2e} {: ^9} {: ^11} {:<73}",
443 info_.accstr, info_.trstr, stats_.outerIter, innerInfo_.numInnerIter, " ", " ", " ", " ",
444 stats_.gradNorm, " ", " ", info_.stopReasonString + info_.cauchystr + info_.randomPredictionString);
445 }
446
447 bool stoppingCriterion(const auto& energy) {
448 std::ostringstream stream;
450 if (stats_.gradNorm < settings_.grad_tol && stats_.outerIter != 0) {
451 logFinalState();
452 spdlog::info("CONVERGENCE: Energy: {:1.16e} norm(gradient): {:1.16e}", energy, stats_.gradNorm);
453 stream << "Gradient norm tolerance reached; options.tolerance = " << settings_.grad_tol;
454
455 info_.reasonString = stream.str();
456
458 return true;
459 } else if (stats_.etaNorm < settings_.corr_tol && stats_.outerIter != 0) {
460 logFinalState();
461 spdlog::info("CONVERGENCE: Energy: {:1.16e} norm(correction): {:1.16e}", energy, stats_.etaNorm);
462 stream << "Displacement norm tolerance reached; = " << settings_.corr_tol << "." << std::endl;
463
464 info_.reasonString = stream.str();
466 return true;
467 }
468
470 if (stats_.time >= settings_.maxtime) {
471 logFinalState();
472 stream << "Max time exceeded; options.maxtime = " << settings_.maxtime << ".";
473 info_.reasonString = stream.str();
475 return true;
476 }
477
479 if (stats_.outerIter >= settings_.maxIter) {
480 logFinalState();
481 stream << "Max iteration count reached; options.maxiter = " << settings_.maxIter << ".";
482 info_.reasonString = stream.str();
484 return true;
485 }
486 return false;
487 }
488
489 void solveInnerProblem(const auto& g, const auto& h) {
490 truncatedConjugateGradient_.setInfo(innerInfo_);
491 int attempts = 0;
492 truncatedConjugateGradient_.factorize(h);
493 // If the preconditioner is IncompleteCholesky the factorization may fail if we have negative diagonal entries and
494 // the initial shift is too small. Therefore, if the factorization fails we increase the initial shift by a factor
495 // of 5.
496 if constexpr (preConditioner == PreConditioner::IncompleteCholesky) {
497 while (truncatedConjugateGradient_.info() != Eigen::Success) {
498 choleskyInitialShift_ *= 5;
499 truncatedConjugateGradient_.preconditioner().setInitialShift(choleskyInitialShift_);
500 truncatedConjugateGradient_.factorize(h);
501 if (attempts > 5)
502 DUNE_THROW(Dune::MathError, "Factorization of preconditioner failed!");
503 ++attempts;
504 }
505 if (truncatedConjugateGradient_.info() == Eigen::Success)
506 choleskyInitialShift_ = 1e-3;
507 }
508 eta_ = truncatedConjugateGradient_.solveWithGuess(-g, eta_);
509 innerInfo_ = truncatedConjugateGradient_.getInfo();
510 }
511
512 F energyFunction_;
513
514 UpdateFunction updateFunction_;
515 std::remove_cvref_t<CorrectionType> eta_;
516 std::remove_cvref_t<CorrectionType> Heta_;
517 Settings settings_;
518 AlgoInfo info_;
519 double choleskyInitialShift_ = 1e-3;
520 Eigen::TCGInfo<double> innerInfo_;
521 Stats stats_;
522 static constexpr double eps_ = 0.0001220703125; // 0.0001220703125 is sqrt(sqrt(maschine-precision))
523 std::array<std::string, 6> tcg_stop_reason_{
524 {"negative curvature", "exceeded trust region", "reached target residual-kappa (linear)",
525 "reached target residual-theta (superlinear)", "maximum inner iterations", "model increased"}
526 };
527
528 using PreConditionerType =
529 std::conditional_t<preConditioner == PreConditioner::IdentityPreconditioner, Eigen::IdentityPreconditioner,
530 std::conditional_t<preConditioner == PreConditioner::DiagonalPreconditioner,
531 typename Eigen::DiagonalPreconditioner<std::decay_t<EnergyType>>,
532 typename Eigen::IncompleteCholesky<std::decay_t<EnergyType>>>>;
533 Eigen::TruncatedConjugateGradient<std::decay_t<HessianType>, Eigen::Lower | Eigen::Upper, PreConditionerType>
534 truncatedConjugateGradient_;
535};
536
547template <typename F, PreConditioner preConditioner = PreConditioner::IncompleteCholesky,
548 typename UF = utils::UpdateDefault>
549auto makeTrustRegion(const F& f, UF&& updateFunction = {}) {
550 return std::make_shared<TrustRegion<F, preConditioner, UF>>(f, updateFunction);
551}
552
553template <typename F, PreConditioner preConditioner = PreConditioner::IncompleteCholesky,
554 typename UF2 = utils::UpdateDefault>
555TrustRegion(const F& f, UF2&& updateFunction = {}) -> TrustRegion<F, preConditioner, std::remove_cvref_t<UF2>>;
556
557} // namespace Ikarus
Contains stl-like type traits.
Collection of fallback default functions.
Helper for the autodiff library.
Definition of TruncatedConjugateGradient class for solving linear systems using truncated conjugate g...
Base for all nonlinear solvers.
Implementation of the solver information returned by the nonlinear solvers.
Enums for observer messages.
Implementation of the observer design pattern with broadcasters.
auto norm(const Eigen::MatrixBase< Derived > &v)
Adding free norm function to Eigen types.
Definition: linearalgebrahelper.hh:259
Definition: assemblermanipulatorbuildingblocks.hh:22
TrustRegion(const F &f, UF2 &&updateFunction={}) -> TrustRegion< F, preConditioner, std::remove_cvref_t< UF2 > >
::value auto createNonlinearSolver(NRConfig &&config, F &&f)
Function to create a NewtonRaphson solver instance.
Definition: newtonraphson.hh:82
auto makeTrustRegion(const F &f, UF &&updateFunction={})
Creates an instance of the TrustRegion solver.
Definition: trustregion.hh:549
StopReason
Enumeration of reasons for stopping the TrustRegion solver.
Definition: trustregion.hh:113
PreConditioner
Enumeration of available preconditioners for the trust region solver.
Definition: trustregion.hh:37
Scalar Delta
Definition: truncatedconjugategradient.hh:38
TCGStopReason stop_tCG
Definition: truncatedconjugategradient.hh:37
Eigen::Index numInnerIter
Definition: truncatedconjugategradient.hh:43
Iterative solver for solving linear systems using the truncated conjugate gradient method.
Definition: truncatedconjugategradient.hh:196
TCGInfo< typename MatrixType::RealScalar > getInfo()
Get information about the truncated conjugate gradient algorithm.
Definition: truncatedconjugategradient.hh:227
void setInfo(TCGInfo< typename MatrixType::RealScalar > alginfo)
Set information about the truncated conjugate gradient algorithm.
Definition: truncatedconjugategradient.hh:233
Base for all nonlinear solvers. Defines the message interface that can be broadcasted to listeners.
Definition: nonlinearsolverbase.hh:27
State for nonlinear solvers.
Definition: nonlinearsolverstate.hh:23
const Domain & domain
Definition: nonlinearsolverstate.hh:27
Information about the result of a non-linear solver.
Definition: solverinfos.hh:21
int iterations
Definition: solverinfos.hh:31
double residualNorm
Definition: solverinfos.hh:29
bool success
Definition: solverinfos.hh:28
Definition: trustregion.hh:44
double grad_tol
Gradient tolerance.
Definition: trustregion.hh:50
double Delta_bar
Maximum trust region radius.
Definition: trustregion.hh:55
double rho_reg
Regularization value for rho.
Definition: trustregion.hh:54
double Delta0
Initial trust region radius.
Definition: trustregion.hh:56
bool useRand
Flag for using random correction predictor.
Definition: trustregion.hh:53
int verbosity
Verbosity level.
Definition: trustregion.hh:45
int debug
Debugging flag.
Definition: trustregion.hh:49
int minIter
Minimum number of iterations.
Definition: trustregion.hh:47
double maxtime
Maximum allowable time for solving.
Definition: trustregion.hh:46
double corr_tol
Correction tolerance.
Definition: trustregion.hh:51
int maxIter
Maximum number of iterations.
Definition: trustregion.hh:48
double rho_prime
Rho prime value.
Definition: trustregion.hh:52
Definition: trustregion.hh:66
static constexpr PreConditioner preConditionerType
Definition: trustregion.hh:73
TRSettings parameters
Definition: trustregion.hh:72
UF UpdateFunction
Definition: trustregion.hh:70
UF updateFunction
Definition: trustregion.hh:74
auto rebindUpdateFunction(UF2 &&updateFunction) const
Definition: trustregion.hh:76
Trust Region solver for non-linear optimization problems.
Definition: trustregion.hh:173
UF UpdateFunction
Type of the update function.
Definition: trustregion.hh:180
typename FTraits::template Range< 0 > EnergyType
Type of the scalar cost.
Definition: trustregion.hh:183
auto residual()
Access the residual.
Definition: trustregion.hh:418
TrustRegion(const F &f, UF2 &&updateFunction={})
Constructs a TrustRegion solver instance.
Definition: trustregion.hh:193
typename FTraits::template Range< 2 > HessianType
Type of the Hessian matrix.
Definition: trustregion.hh:185
typename FTraits::template Range< 1 > GradientType
Type of the gradient vector.
Definition: trustregion.hh:184
F DifferentiableFunction
Type of function to minimize.
Definition: trustregion.hh:181
typename FTraits::Domain Domain
Type of the parameter vector of.
Definition: trustregion.hh:178
typename FTraits::template Range< 1 > CorrectionType
Type of the correction of x += deltaX.
Definition: trustregion.hh:179
TRSettings Settings
Type of the settings for the TrustRegion solver.
Definition: trustregion.hh:175
void setup(const Settings &settings)
Sets up the TrustRegion solver with the provided settings and checks feasibility.
Definition: trustregion.hh:201
NonLinearSolverInformation solve(Domain &x)
Solves the nonlinear optimization problem using the TrustRegion algorithm.
Definition: trustregion.hh:214
typename F::Traits FTraits
Definition: trustregion.hh:177
auto & energy()
Access the energy function.
Definition: trustregion.hh:412
Additional information about the TrustRegion algorithm.
Definition: trustregion.hh:126
std::string cauchystr
Used Cauchy step string.
Definition: trustregion.hh:134
StopReason stop
Stopping reason.
Definition: trustregion.hh:137
std::string randomPredictionString
Random prediction string.
Definition: trustregion.hh:133
bool acceptProposal
Flag indicating whether the proposal is accepted.
Definition: trustregion.hh:135
std::string reasonString
String describing the stopping reason.
Definition: trustregion.hh:138
int consecutive_TRminus
Consecutive trust region decreases.
Definition: trustregion.hh:128
bool used_cauchy
Flag indicating whether Cauchy point was used.
Definition: trustregion.hh:136
int consecutive_Rejected
Consecutive rejected proposals.
Definition: trustregion.hh:129
std::string trstr
Trust region change string (TR+, TR-).
Definition: trustregion.hh:131
std::string stopReasonString
String describing the stopping reason.
Definition: trustregion.hh:130
std::string accstr
Acceptance string (REJ, acc).
Definition: trustregion.hh:132
int consecutive_TRplus
Consecutive trust region increases.
Definition: trustregion.hh:127
Information about the TrustRegion solver.
Definition: trustregion.hh:146
double rho
Definition: trustregion.hh:152
double etaNorm
Definition: trustregion.hh:148
double energyProposal
Definition: trustregion.hh:151
double energy
Definition: trustregion.hh:150
double gradNorm
Definition: trustregion.hh:147
int outerIter
Definition: trustregion.hh:153
double time
Definition: trustregion.hh:149
int innerIterSum
Definition: trustregion.hh:154