14#include <dune/common/float_cmp.hh>
15#include <dune/functions/common/signature.hh>
17#include <spdlog/spdlog.h>
19#include <Eigen/Sparse>
46 double maxtime = std::numeric_limits<double>::infinity();
55 double Delta_bar = std::numeric_limits<double>::infinity();
64template <PreConditioner preConditioner = PreConditioner::IncompleteCholesky,
typename UF = utils::UpdateDefault>
67 static_assert(std::copy_constructible<UF>,
68 " The update function should be copy constructable. If it is a lambda wrap it in a std::function");
75 template <
typename UF2>
84 typename UF = utils::UpdateDefault>
95template <
typename F,
typename TRConfig>
96requires traits::isSpecializationNonTypeAndTypes<TrustRegionConfig, std::remove_cvref_t<TRConfig>>::value
98 static constexpr PreConditioner preConditioner = std::remove_cvref_t<TRConfig>::preConditionerType;
99 using UF = std::remove_cvref_t<TRConfig>::UpdateFunction;
100 static_assert(std::remove_cvref_t<F>::nDerivatives == 2,
101 "The number of derivatives in the DifferentiableFunction have to be exactly 2.");
102 auto solver = std::make_shared<TrustRegion<F, preConditioner, UF>>(f, std::forward<TRConfig>(config).updateFunction);
104 solver->setup(config.parameters);
169template <
typename F, PreConditioner preConditioner,
typename UF>
192 template <
typename UF2 = UF>
194 : energyFunction_{f},
195 updateFunction_{std::forward<UF2>(updateFunction)} {}
202 settings_ = settings;
203 assert(settings_.
rho_prime < 0.25 &&
"options.rho_prime must be strictly smaller than 1/4.");
204 assert(settings_.
Delta_bar > 0 &&
"options.Delta_bar must be positive.");
206 "options.Delta0 must be positive and smaller than Delta_bar.");
220 auto& energyF = energyFunction_;
221 auto gradientF = derivative(energyF);
222 auto hessianF = derivative(gradientF);
223 decltype(
auto) e = energyF(x);
224 decltype(
auto) g = gradientF(x);
225 decltype(
auto) h = hessianF(x);
229 truncatedConjugateGradient_.analyzePattern(h);
232 truncatedConjugateGradient_.analyzePattern(h);
238 " | iter | inner_i | rho | energy | energy_p | energy_inc | norm(g) | Delta | norm(corr) | "
240 spdlog::info(
"{:-^143}",
"-");
241 while (not stoppingCriterion(e)) {
246 while (eta_.dot(h * eta_) > innerInfo_.
Delta * innerInfo_.
Delta)
253 solveInnerProblem(g, h);
264 const Eigen::VectorXd Hg = h * g;
265 const auto g_Hg = g.dot(Hg);
269 tauC = std::min(Dune::power(stats_.
gradNorm, 3) / (innerInfo_.
Delta * g_Hg), 1.0);
272 const Eigen::VectorXd etaC = -tauC * innerInfo_.
Delta / stats_.
gradNorm * g;
273 const Eigen::VectorXd HetaC = -tauC * innerInfo_.
Delta / stats_.
gradNorm * Hg;
275 const double mdle = stats_.
energy + g.dot(eta_) + .5 * Heta_.dot(eta_);
276 const double mdlec = stats_.
energy + g.dot(etaC) + .5 * HetaC.dot(etaC);
277 if (mdlec < mdle && stats_.
outerIter == 0) {
289 updateFunction_(x, eta_);
298 auto rhoden = -eta_.dot(g + 0.5 * Heta_);
303 const auto rhoReg = std::max(1.0, abs(stats_.
energy)) * eps_ * settings_.
rho_reg;
304 rhonum = rhonum + rhoReg;
305 rhoden = rhoden + rhoReg;
307 const bool modelDecreased = rhoden > 0.0;
312 stats_.
rho = rhonum / rhoden;
313 stats_.
rho = stats_.
rho < 0.0 ? -1.0 : stats_.
rho;
321 if (stats_.
rho < 1e-4 || not modelDecreased || std::isnan(stats_.
rho) || not energyDecreased) {
323 innerInfo_.
Delta /= 4.0;
328 spdlog::info(
" +++ Detected many consecutive TR- (radius decreases).");
329 spdlog::info(
" +++ Consider decreasing options.Delta_bar by an order of magnitude.");
340 spdlog::info(
" +++ Detected many consecutive TR+ (radius increases)");
341 spdlog::info(
" +++ Consider increasing options.Delta_bar by an order of magnitude");
349 if (modelDecreased && stats_.
rho > settings_.
rho_prime && energyDecreased) {
352 "Energy function increased by {} (step size: {}). Since this is small we accept the step and hope for "
353 "convergence of the gradient norm.",
364 innerInfo_.
Delta /= 2;
377 solverState.dNorm = stats_.
etaNorm;
378 solverState.rNorm = stats_.
gradNorm;
387 updateFunction_(x, -eta_);
406 return solverInformation;
412 auto&
energy() {
return energyFunction_; }
418 auto residual() {
return derivative(energyFunction_); }
422 constexpr auto make_optional_reference(T& value) {
423 return std::make_optional<std::reference_wrapper<const T>>(std::cref(value));
427 requires(not std::is_lvalue_reference_v<T>)
428 constexpr T make_optional_reference(T&& value) {
432 void logState()
const {
434 "{:>3s} {:>3s} {:>6d} {:>9d} {:>6.2f} {:>9.2e} {:>9.2e} {:>11.2e} {:>9.2e} {:>9.2e} {:>11.2e} "
441 void logFinalState() {
442 spdlog::info(
"{:>3s} {:>3s} {:>6d} {:>9d} {: ^6} {: ^9} {: ^9} {: ^11} {:>9.2e} {: ^9} {: ^11} {:<73}",
447 bool stoppingCriterion(
const auto&
energy) {
448 std::ostringstream stream;
452 spdlog::info(
"CONVERGENCE: Energy: {:1.16e} norm(gradient): {:1.16e}",
energy, stats_.
gradNorm);
453 stream <<
"Gradient norm tolerance reached; options.tolerance = " << settings_.
grad_tol;
461 spdlog::info(
"CONVERGENCE: Energy: {:1.16e} norm(correction): {:1.16e}",
energy, stats_.
etaNorm);
462 stream <<
"Displacement norm tolerance reached; = " << settings_.
corr_tol <<
"." << std::endl;
472 stream <<
"Max time exceeded; options.maxtime = " << settings_.
maxtime <<
".";
481 stream <<
"Max iteration count reached; options.maxiter = " << settings_.
maxIter <<
".";
489 void solveInnerProblem(
const auto& g,
const auto& h) {
490 truncatedConjugateGradient_.
setInfo(innerInfo_);
492 truncatedConjugateGradient_.factorize(h);
497 while (truncatedConjugateGradient_.info() != Eigen::Success) {
498 choleskyInitialShift_ *= 5;
499 truncatedConjugateGradient_.preconditioner().setInitialShift(choleskyInitialShift_);
500 truncatedConjugateGradient_.factorize(h);
502 DUNE_THROW(Dune::MathError,
"Factorization of preconditioner failed!");
505 if (truncatedConjugateGradient_.info() == Eigen::Success)
506 choleskyInitialShift_ = 1e-3;
508 eta_ = truncatedConjugateGradient_.solveWithGuess(-g, eta_);
509 innerInfo_ = truncatedConjugateGradient_.
getInfo();
515 std::remove_cvref_t<CorrectionType> eta_;
516 std::remove_cvref_t<CorrectionType> Heta_;
519 double choleskyInitialShift_ = 1e-3;
522 static constexpr double eps_ = 0.0001220703125;
523 std::array<std::string, 6> tcg_stop_reason_{
524 {
"negative curvature",
"exceeded trust region",
"reached target residual-kappa (linear)",
525 "reached target residual-theta (superlinear)",
"maximum inner iterations",
"model increased"}
528 using PreConditionerType =
531 typename Eigen::DiagonalPreconditioner<std::decay_t<EnergyType>>,
532 typename Eigen::IncompleteCholesky<std::decay_t<EnergyType>>>>;
534 truncatedConjugateGradient_;
548 typename UF = utils::UpdateDefault>
550 return std::make_shared<TrustRegion<F, preConditioner, UF>>(f, updateFunction);
554 typename UF2 = utils::UpdateDefault>
Contains stl-like type traits.
Collection of fallback default functions.
Helper for the autodiff library.
Definition of TruncatedConjugateGradient class for solving linear systems using truncated conjugate g...
Base for all nonlinear solvers.
Implementation of the solver information returned by the nonlinear solvers.
Enums for observer messages.
Implementation of the observer design pattern with broadcasters.
auto norm(const Eigen::MatrixBase< Derived > &v)
Adding free norm function to Eigen types.
Definition: linearalgebrahelper.hh:259
Definition: assemblermanipulatorbuildingblocks.hh:22
TrustRegion(const F &f, UF2 &&updateFunction={}) -> TrustRegion< F, preConditioner, std::remove_cvref_t< UF2 > >
::value auto createNonlinearSolver(NRConfig &&config, F &&f)
Function to create a NewtonRaphson solver instance.
Definition: newtonraphson.hh:82
auto makeTrustRegion(const F &f, UF &&updateFunction={})
Creates an instance of the TrustRegion solver.
Definition: trustregion.hh:549
StopReason
Enumeration of reasons for stopping the TrustRegion solver.
Definition: trustregion.hh:113
@ maximumIterationsReached
@ correctionNormTolReached
PreConditioner
Enumeration of available preconditioners for the trust region solver.
Definition: trustregion.hh:37
Scalar Delta
Definition: truncatedconjugategradient.hh:38
TCGStopReason stop_tCG
Definition: truncatedconjugategradient.hh:37
Eigen::Index numInnerIter
Definition: truncatedconjugategradient.hh:43
Iterative solver for solving linear systems using the truncated conjugate gradient method.
Definition: truncatedconjugategradient.hh:196
TCGInfo< typename MatrixType::RealScalar > getInfo()
Get information about the truncated conjugate gradient algorithm.
Definition: truncatedconjugategradient.hh:227
void setInfo(TCGInfo< typename MatrixType::RealScalar > alginfo)
Set information about the truncated conjugate gradient algorithm.
Definition: truncatedconjugategradient.hh:233
Base for all nonlinear solvers. Defines the message interface that can be broadcasted to listeners.
Definition: nonlinearsolverbase.hh:27
State for nonlinear solvers.
Definition: nonlinearsolverstate.hh:23
const Domain & domain
Definition: nonlinearsolverstate.hh:27
Information about the result of a non-linear solver.
Definition: solverinfos.hh:21
int iterations
Definition: solverinfos.hh:31
double residualNorm
Definition: solverinfos.hh:29
bool success
Definition: solverinfos.hh:28
Definition: trustregion.hh:44
double grad_tol
Gradient tolerance.
Definition: trustregion.hh:50
double Delta_bar
Maximum trust region radius.
Definition: trustregion.hh:55
double rho_reg
Regularization value for rho.
Definition: trustregion.hh:54
double Delta0
Initial trust region radius.
Definition: trustregion.hh:56
bool useRand
Flag for using random correction predictor.
Definition: trustregion.hh:53
int verbosity
Verbosity level.
Definition: trustregion.hh:45
int debug
Debugging flag.
Definition: trustregion.hh:49
int minIter
Minimum number of iterations.
Definition: trustregion.hh:47
double maxtime
Maximum allowable time for solving.
Definition: trustregion.hh:46
double corr_tol
Correction tolerance.
Definition: trustregion.hh:51
int maxIter
Maximum number of iterations.
Definition: trustregion.hh:48
double rho_prime
Rho prime value.
Definition: trustregion.hh:52
Definition: trustregion.hh:66
static constexpr PreConditioner preConditionerType
Definition: trustregion.hh:73
TRSettings parameters
Definition: trustregion.hh:72
UF UpdateFunction
Definition: trustregion.hh:70
UF updateFunction
Definition: trustregion.hh:74
auto rebindUpdateFunction(UF2 &&updateFunction) const
Definition: trustregion.hh:76
Trust Region solver for non-linear optimization problems.
Definition: trustregion.hh:173
UF UpdateFunction
Type of the update function.
Definition: trustregion.hh:180
typename FTraits::template Range< 0 > EnergyType
Type of the scalar cost.
Definition: trustregion.hh:183
auto residual()
Access the residual.
Definition: trustregion.hh:418
TrustRegion(const F &f, UF2 &&updateFunction={})
Constructs a TrustRegion solver instance.
Definition: trustregion.hh:193
typename FTraits::template Range< 2 > HessianType
Type of the Hessian matrix.
Definition: trustregion.hh:185
typename FTraits::template Range< 1 > GradientType
Type of the gradient vector.
Definition: trustregion.hh:184
F DifferentiableFunction
Type of function to minimize.
Definition: trustregion.hh:181
typename FTraits::Domain Domain
Type of the parameter vector of.
Definition: trustregion.hh:178
typename FTraits::template Range< 1 > CorrectionType
Type of the correction of x += deltaX.
Definition: trustregion.hh:179
TRSettings Settings
Type of the settings for the TrustRegion solver.
Definition: trustregion.hh:175
void setup(const Settings &settings)
Sets up the TrustRegion solver with the provided settings and checks feasibility.
Definition: trustregion.hh:201
NonLinearSolverInformation solve(Domain &x)
Solves the nonlinear optimization problem using the TrustRegion algorithm.
Definition: trustregion.hh:214
typename F::Traits FTraits
Definition: trustregion.hh:177
auto & energy()
Access the energy function.
Definition: trustregion.hh:412
Additional information about the TrustRegion algorithm.
Definition: trustregion.hh:126
std::string cauchystr
Used Cauchy step string.
Definition: trustregion.hh:134
StopReason stop
Stopping reason.
Definition: trustregion.hh:137
std::string randomPredictionString
Random prediction string.
Definition: trustregion.hh:133
bool acceptProposal
Flag indicating whether the proposal is accepted.
Definition: trustregion.hh:135
std::string reasonString
String describing the stopping reason.
Definition: trustregion.hh:138
int consecutive_TRminus
Consecutive trust region decreases.
Definition: trustregion.hh:128
bool used_cauchy
Flag indicating whether Cauchy point was used.
Definition: trustregion.hh:136
int consecutive_Rejected
Consecutive rejected proposals.
Definition: trustregion.hh:129
std::string trstr
Trust region change string (TR+, TR-).
Definition: trustregion.hh:131
std::string stopReasonString
String describing the stopping reason.
Definition: trustregion.hh:130
std::string accstr
Acceptance string (REJ, acc).
Definition: trustregion.hh:132
int consecutive_TRplus
Consecutive trust region increases.
Definition: trustregion.hh:127
Information about the TrustRegion solver.
Definition: trustregion.hh:146
double rho
Definition: trustregion.hh:152
double etaNorm
Definition: trustregion.hh:148
double energyProposal
Definition: trustregion.hh:151
double energy
Definition: trustregion.hh:150
double gradNorm
Definition: trustregion.hh:147
int outerIter
Definition: trustregion.hh:153
double time
Definition: trustregion.hh:149
int innerIterSum
Definition: trustregion.hh:154