version 0.4.1
svk.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
10// SPDX-License-Identifier: LGPL-3.0-or-later
11
12#pragma once
13
16
17namespace Ikarus::Materials {
18
35template <typename ST>
36struct StVenantKirchhoffT : public Material<StVenantKirchhoffT<ST>>
37{
38 using ScalarType = ST;
39 static constexpr int dim = 3;
40 using StrainMatrix = Eigen::Matrix<ScalarType, dim, dim>;
42 using MaterialTensor = Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>>;
43
45
46 static constexpr auto strainTag = StrainTags::greenLagrangian;
47 static constexpr auto stressTag = StressTags::PK2;
49 static constexpr bool energyAcceptsVoigt = true;
50 static constexpr bool stressToVoigt = true;
51 static constexpr bool stressAcceptsVoigt = true;
52 static constexpr bool moduliToVoigt = true;
53 static constexpr bool moduliAcceptsVoigt = true;
54 static constexpr double derivativeFactorImpl = 1;
55
56 [[nodiscard]] constexpr static std::string nameImpl() { return "StVenantKirchhoff"; }
57
63 : materialParameter_{mpt} {}
64
68 MaterialParameters materialParametersImpl() const { return materialParameter_; }
69
76 template <typename Derived>
77 ScalarType storedEnergyImpl(const Eigen::MatrixBase<Derived>& E) const {
78 static_assert(Concepts::EigenMatrixOrVoigtNotation3<Derived>);
79 if constexpr (Concepts::EigenVector<Derived>) {
80 const ScalarType traceE = E.template segment<3>(0).sum();
81 const ScalarType squaredNorm =
82 E.template segment<3>(0).squaredNorm() + E.template segment<3>(3).squaredNorm() / ScalarType(2.0);
83 return materialParameter_.lambda / ScalarType(2.0) * traceE * traceE + materialParameter_.mu * squaredNorm;
84 } else {
85 const auto traceE = E.trace();
86 return materialParameter_.lambda / ScalarType(2.0) * traceE * traceE + materialParameter_.mu * E.squaredNorm();
87 }
88 }
89
97 template <bool voigt, typename Derived>
98 auto stressesImpl(const Eigen::MatrixBase<Derived>& E) const {
99 static_assert(Concepts::EigenMatrixOrVoigtNotation3<decltype(E.eval())>);
100 const auto& Ed = E.derived();
101 if constexpr (!voigt) {
102 if constexpr (Concepts::EigenVector<Derived>) {
103 static_assert(Concepts::EigenVector6<Derived>);
104 StressMatrix S;
105 const ScalarType traceE = Ed.template segment<3>(0).sum();
106 S.diagonal().array() =
107 materialParameter_.lambda * traceE + 2 * materialParameter_.mu * Ed.template segment<3>(0).array();
108 S(1, 2) = S(2, 1) = materialParameter_.mu * Ed(3);
109 S(0, 2) = S(2, 0) = materialParameter_.mu * Ed(4);
110 S(0, 1) = S(1, 0) = materialParameter_.mu * Ed(5); // no two since E voigt has 2* on off-diagonal terms
111 return S;
112 } else {
113 static_assert(Concepts::EigenMatrix33<Derived>);
114 return (materialParameter_.lambda * Ed.trace() * StrainMatrix::Identity() + 2 * materialParameter_.mu * Ed)
115 .eval();
116 }
117 } else {
118 if constexpr (Concepts::EigenVector<Derived>) {
119 static_assert(Concepts::EigenVector6<Derived>);
120 Eigen::Matrix<ScalarType, 6, 1> S;
121 const ScalarType traceE = Ed.template segment<3>(0).sum();
122 S.template segment<3>(0).array() = traceE * materialParameter_.lambda;
123 S.template segment<3>(0) += materialParameter_.mu * 2 * Ed.template segment<3>(0);
124 S.template segment<3>(3) =
125 materialParameter_.mu * Ed.template segment<3>(3); // no two since E voigt has 2* on off-diagonal terms
126 return S;
127 } else {
128 Eigen::Matrix<ScalarType, 6, 1> S;
129 S.template segment<3>(0).array() = Ed.trace() * materialParameter_.lambda;
130 S.template segment<3>(0) += 2 * materialParameter_.mu * Ed.diagonal();
131 S(3) = 2 * materialParameter_.mu * Ed(1, 2);
132 S(4) = 2 * materialParameter_.mu * Ed(0, 2);
133 S(5) = 2 * materialParameter_.mu * Ed(0, 1);
134 return S;
135 }
136 }
137 }
138
147 template <bool voigt, typename Derived>
148 auto tangentModuliImpl(const Eigen::MatrixBase<Derived>& /* E */) const {
149 static_assert(Concepts::EigenMatrixOrVoigtNotation3<Derived>);
150 if constexpr (!voigt) {
151 MaterialTensor moduli;
152 moduli = materialParameter_.lambda * identityFourthOrder() +
153 2 * materialParameter_.mu * symmetricIdentityFourthOrder();
154 return moduli;
155 } else {
156 Eigen::Matrix<ScalarType, 6, 6> moduli;
157 moduli.setZero();
158 moduli.template block<3, 3>(0, 0).array() = materialParameter_.lambda;
159 moduli.template block<3, 3>(0, 0).diagonal().array() += 2 * materialParameter_.mu;
160 moduli.template block<3, 3>(3, 3).diagonal().array() = materialParameter_.mu;
161 return moduli;
162 }
163 }
164
170 template <typename ScalarTypeOther>
171 auto rebind() const {
172 return StVenantKirchhoffT<ScalarTypeOther>(materialParameter_);
173 }
174
175private:
176 MaterialParameters materialParameter_;
177};
178
183
184} // namespace Ikarus::Materials
Helper for the Eigen::Tensor types.
auto symmetricIdentityFourthOrder()
Generates a symmetric identity fourth-order tensor.
Definition: tensorutils.hh:73
auto identityFourthOrder()
Generates an identity fourth-order tensor.
Definition: tensorutils.hh:114
Definition: arrudaboyce.hh:27
Interface classf or materials.
Definition: finiteelements/mechanics/materials/interface.hh:80
Implementation of the Saint Venant-Kirchhoff material model.The energy is computed as.
Definition: svk.hh:37
ST ScalarType
Definition: svk.hh:38
auto stressesImpl(const Eigen::MatrixBase< Derived > &E) const
Computes the stresses in the Saint Venant-Kirchhoff material model.
Definition: svk.hh:98
static constexpr std::string nameImpl()
Definition: svk.hh:56
static constexpr bool moduliToVoigt
Definition: svk.hh:52
LamesFirstParameterAndShearModulus MaterialParameters
Definition: svk.hh:44
static constexpr auto strainTag
Definition: svk.hh:46
static constexpr int dim
Definition: svk.hh:39
auto rebind() const
Rebinds the material to a different scalar type.
Definition: svk.hh:171
Eigen::Matrix< ScalarType, dim, dim > StrainMatrix
Definition: svk.hh:40
StrainMatrix StressMatrix
Definition: svk.hh:41
ScalarType storedEnergyImpl(const Eigen::MatrixBase< Derived > &E) const
Computes the stored energy in the Saint Venant-Kirchhoff material model.
Definition: svk.hh:77
static constexpr double derivativeFactorImpl
Definition: svk.hh:54
StVenantKirchhoffT(const MaterialParameters &mpt)
Constructor for StVenantKirchhoffT.
Definition: svk.hh:62
static constexpr bool stressAcceptsVoigt
Definition: svk.hh:51
static constexpr auto stressTag
Definition: svk.hh:47
auto tangentModuliImpl(const Eigen::MatrixBase< Derived > &) const
Computes the tangent moduli in the Saint Venant-Kirchhoff material model.
Definition: svk.hh:148
Eigen::TensorFixedSize< ScalarType, Eigen::Sizes< dim, dim, dim, dim > > MaterialTensor
Definition: svk.hh:42
static constexpr bool moduliAcceptsVoigt
Definition: svk.hh:53
static constexpr bool stressToVoigt
Definition: svk.hh:50
static constexpr bool energyAcceptsVoigt
Definition: svk.hh:49
MaterialParameters materialParametersImpl() const
Returns the material parameters stored in the material.
Definition: svk.hh:68
static constexpr auto tangentModuliTag
Definition: svk.hh:48
Definition: physicshelper.hh:54
double lambda
Definition: physicshelper.hh:55
double mu
Definition: physicshelper.hh:56
Concept defining the requirements for Eigen vectors.
Definition: utils/concepts.hh:362
Contains the Material interface class and related template functions for material properties.