11#include <dune/geometry/quadraturerules.hh>
12#include <dune/localfefunctions/cachedlocalBasis/cachedlocalBasis.hh>
13#include <dune/localfefunctions/impl/standardLocalFunction.hh>
24template <
typename PreFE,
typename FE>
25class KirchhoffLoveShell;
35 template <
typename PreFE,
typename FE>
49template <
typename PreFE,
typename FE>
62 using LocalBasisType =
decltype(std::declval<LocalView>().tree().child(0).finiteElement().localBasis());
79 template <
typename ST =
double>
82 Eigen::Matrix<double, 3, 3>
C;
85 Eigen::Matrix<ST, 2, 3>
j;
86 Eigen::Matrix<double, 2, 3>
J;
88 Eigen::Matrix3<double>
H;
89 Eigen::Vector3<ST>
a3N;
90 Eigen::Vector3<ST>
a3;
101 : mat_{pre.material},
102 thickness_{pre.thickness} {}
109 const auto& localView = underlying().localView();
110 assert(localView.bound());
111 const auto& element = localView.element();
112 auto& firstChild = localView.tree().child(0);
114 const auto& fe = firstChild.finiteElement();
116 numberOfNodes_ = fe.size();
117 order_ = 2 * (fe.localBasis().order());
118 localBasis_ = Dune::CachedLocalBasis(fe.localBasis());
119 if constexpr (
requires { element.impl().getQuadratureRule(order_); })
120 if (element.impl().isTrimmed())
121 localBasis_.bind(element.impl().getQuadratureRule(order_), Dune::bindDerivatives(0, 1, 2));
123 localBasis_.bind(Dune::QuadratureRules<double, myDim>::rule(element.type(), order_),
124 Dune::bindDerivatives(0, 1, 2));
126 localBasis_.bind(Dune::QuadratureRules<double, myDim>::rule(element.type(), order_),
127 Dune::bindDerivatives(0, 1, 2));
141 template <
typename ST =
double>
144 const std::optional<std::reference_wrapper<
const Eigen::VectorX<ST>>>& dx = std::nullopt)
const {
146 auto disp = Ikarus::FEHelper::localSolutionBlockVector<Traits>(d, underlying().localView(), dx);
147 Dune::StandardLocalFunction uFunction(
148 localBasis_, disp, std::make_shared<const Geometry>(underlying().localView().element().
geometry()));
154 [[nodiscard]]
int order()
const {
return order_; }
165 template <
template <
typename,
int,
int>
class RT>
166 requires(supportsResultType<RT>())
170 DUNE_THROW(Dune::NotImplemented,
"No results are implemented");
175 const auto& underlying()
const {
return static_cast<const FE&
>(*this); }
176 auto& underlying() {
return static_cast<FE&
>(*this); }
178 Dune::CachedLocalBasis<std::remove_cvref_t<LocalBasisType>> localBasis_;
180 YoungsModulusAndPoissonsRatio mat_;
183 size_t numberOfNodes_{0};
202 const auto& uFunction)
const {
203 using ST =
typename std::remove_cvref_t<
decltype(uFunction)>::ctype;
206 using namespace Dune;
207 using namespace Dune::DerivativeDirections;
208 const auto [X, Jd, Hd] = geo.impl().zeroFirstAndSecondDerivativeOfPosition(gpPos);
211 const Eigen::Matrix<double, 2, 2> A = kin.J * kin.J.transpose();
212 Eigen::Matrix<double, 3, 3> G = Eigen::Matrix<double, 3, 3>::Zero();
214 G.block<2, 2>(0, 0) = A;
216 const Eigen::Matrix<double, 3, 3> GInv = G.inverse();
221 const auto& Ndd = localBasis_.evaluateSecondDerivatives(gpIndex);
223 const auto hessianu = Ndd.transpose().template cast<ST>() * uasMatrix;
224 kin.h = kin.H + hessianu;
225 const Eigen::Matrix<ST, 3, 2> gradu = toEigen(uFunction.evaluateDerivative(
226 gpIndex, Dune::wrt(spatialAll), Dune::on(Dune::DerivativeDirections::referenceElement)));
227 kin.j = kin.J + gradu.transpose();
228 kin.a3N = (kin.j.row(0).cross(kin.j.row(1)));
229 kin.a3 = kin.a3N.normalized();
230 Eigen::Vector<ST, 3> bV = kin.h * kin.a3;
232 const auto BV =
toVoigt(toEigen(geo.impl().secondFundamentalForm(gpPos)));
233 kin.kappaV = BV - bV;
237 template <
typename ST>
240 const std::optional<std::reference_wrapper<
const Eigen::VectorX<ST>>>& dx = std::nullopt)
const {
242 DUNE_THROW(Dune::NotImplemented,
"MatrixAffordance not implemented: " +
toString(affordance));
243 using namespace Dune::DerivativeDirections;
244 using namespace Dune;
247 const auto geo = underlying().localView().element().geometry();
249 for (
const auto& [gpIndex, gp] : uFunction.viewOverIntegrationPoints()) {
250 const auto intElement = geo.integrationElement(gp.position()) * gp.weight();
251 const auto [C, epsV, kappaV, jE, J, h, H, a3N, a3] =
253 const Eigen::Vector<ST, membraneStrainSize> membraneForces = thickness_ * C * epsV;
254 const Eigen::Vector<ST, bendingStrainSize> moments = Dune::power(thickness_, 3) / 12.0 * C * kappaV;
256 const auto& Nd = localBasis_.evaluateJacobian(gpIndex);
257 const auto& Ndd = localBasis_.evaluateSecondDerivatives(gpIndex);
258 for (
size_t i = 0; i < numberOfNodes_; ++i) {
259 Eigen::Matrix<ST, membraneStrainSize, worldDim> bopIMembrane =
262 Eigen::Matrix<ST, bendingStrainSize, worldDim> bopIBending =
bopBending(jE, h, Nd, Ndd, i, a3N, a3);
263 for (
size_t j = i; j < numberOfNodes_; ++j) {
264 auto KBlock = K.template block<worldDim, worldDim>(
worldDim * i,
worldDim * j);
265 Eigen::Matrix<ST, membraneStrainSize, worldDim> bopJMembrane =
267 Eigen::Matrix<ST, bendingStrainSize, worldDim> bopJBending =
bopBending(jE, h, Nd, Ndd, j, a3N, a3);
268 KBlock += thickness_ * bopIMembrane.transpose() * C * bopJMembrane * intElement;
269 KBlock += Dune::power(thickness_, 3) / 12.0 * bopIBending.transpose() * C * bopJBending * intElement;
272 gp.position(), Nd, geo, uFunction, localBasis_, membraneForces, i, j);
273 Eigen::Matrix<ST, worldDim, worldDim> kgBendingIJ =
kgBending(jE, h, Nd, Ndd, a3N, a3, moments, i, j);
274 KBlock += kgMembraneIJ * intElement;
275 KBlock += kgBendingIJ * intElement;
279 K.template triangularView<Eigen::StrictlyLower>() = K.transpose();
282 template <
typename ST>
285 const std::optional<std::reference_wrapper<
const Eigen::VectorX<ST>>>& dx = std::nullopt)
const {
287 DUNE_THROW(Dune::NotImplemented,
"VectorAffordance not implemented: " +
toString(affordance));
288 using namespace Dune::DerivativeDirections;
289 using namespace Dune;
292 const auto geo = underlying().localView().element().geometry();
295 for (
const auto& [gpIndex, gp] : uFunction.viewOverIntegrationPoints()) {
296 const auto [C, epsV, kappaV, jE, J, h, H, a3N, a3] =
298 const Eigen::Vector<ST, 3> membraneForces = thickness_ * C * epsV;
299 const Eigen::Vector<ST, 3> moments = Dune::power(thickness_, 3) / 12.0 * C * kappaV;
301 const auto& Nd = localBasis_.evaluateJacobian(gpIndex);
302 const auto& Ndd = localBasis_.evaluateSecondDerivatives(gpIndex);
303 for (
size_t i = 0; i < numberOfNodes_; ++i) {
304 Eigen::Matrix<ST, 3, 3> bopIMembrane =
306 Eigen::Matrix<ST, 3, 3> bopIBending =
bopBending(jE, h, Nd, Ndd, i, a3N, a3);
307 force.template segment<3>(3 * i) +=
308 bopIMembrane.transpose() * membraneForces * geo.integrationElement(gp.position()) * gp.weight();
309 force.template segment<3>(3 * i) +=
310 bopIBending.transpose() * moments * geo.integrationElement(gp.position()) * gp.weight();
315 template <
typename ST>
318 const std::optional<std::reference_wrapper<
const Eigen::VectorX<ST>>>& dx = std::nullopt)
const -> ST {
320 DUNE_THROW(Dune::NotImplemented,
"ScalarAffordance not implemented: " +
toString(affordance));
321 using namespace Dune::DerivativeDirections;
322 using namespace Dune;
324 const auto& lambda = par.parameter();
327 const auto geo = underlying().localView().element().geometry();
329 for (
const auto& [gpIndex, gp] : uFunction.viewOverIntegrationPoints()) {
330 const auto [C, epsV, kappaV, j, J, h, H, a3N, a3] =
333 const ST membraneEnergy = 0.5 * thickness_ * epsV.dot(C * epsV);
334 const ST bendingEnergy = 0.5 * Dune::power(thickness_, 3) / 12.0 * kappaV.dot(C * kappaV);
335 energy += (membraneEnergy + bendingEnergy) * geo.integrationElement(gp.position()) * gp.weight();
341 template <
typename ST>
342 Eigen::Matrix<ST, 3, 3>
kgBending(
const Eigen::Matrix<ST, 2, 3>& jcur,
const Eigen::Matrix3<ST>& h,
const auto& dN,
343 const auto& ddN,
const Eigen::Vector3<ST>& a3N,
const Eigen::Vector3<ST>& a3,
344 const Eigen::Vector3<ST>& S,
int I,
int J)
const {
345 Eigen::Matrix<ST, 3, 3> kg;
348 const auto& dN1i = dN(I, 0);
349 const auto& dN1j = dN(J, 0);
350 const auto& dN2i = dN(I, 1);
351 const auto& dN2j = dN(J, 1);
353 const Eigen::Matrix<ST, 3, 3> P =
354 1.0 / a3N.norm() * (Eigen::Matrix<double, 3, 3>::Identity() - a3 * a3.transpose());
356 const auto a1dxI = Eigen::Matrix<double, 3, 3>::Identity() *
359 const auto a2dxI = Eigen::Matrix<double, 3, 3>::Identity() * dN2i;
360 const auto a1dxJ = Eigen::Matrix<double, 3, 3>::Identity() * dN1j;
361 const auto a2dxJ = Eigen::Matrix<double, 3, 3>::Identity() * dN2j;
362 const auto a1 = jcur.row(0);
363 const auto a2 = jcur.row(1);
364 const Eigen::Matrix<ST, 3, 3> a3NdI = a1dxI.colwise().cross(a2) - a2dxI.colwise().cross(a1);
365 const Eigen::Matrix<ST, 3, 3> a3NdJ = a1dxJ.colwise().cross(a2) - a2dxJ.colwise().cross(a1);
366 Eigen::Matrix<ST, 3, 3> a3dI = P * a3NdI;
367 Eigen::Matrix<ST, 3, 3> a3dJ = P * a3NdJ;
368 for (
int i = 0; i < 3; ++i) {
369 const auto a_albe = h.row(i).transpose();
370 const auto& ddNI = ddN(I, i);
371 const auto& ddNJ = ddN(J, i);
372 Eigen::Vector3<ST> vecd = P * a_albe;
374 Eigen::Matrix<ST, 3, 3> a3Ndd =
375 1.0 / a3N.squaredNorm() *
376 ((3 * a3 * a3.transpose() - Eigen::Matrix<double, 3, 3>::Identity()) * (a3.dot(a_albe)) -
377 a_albe * a3.transpose() - a3 * a_albe.transpose());
379 Eigen::Matrix<ST, 3, 3> secondDerivativeDirectorIJ =
skew(((dN2i * dN1j - dN1i * dN2j) * vecd).eval());
380 kg -= (a3NdI.transpose() * a3Ndd * a3NdJ + secondDerivativeDirectorIJ + (ddNI * a3dJ + ddNJ * a3dI.transpose())) *
381 S[i] * (i == 2 ? 2 : 1);
387 template <
typename ST>
388 Eigen::Matrix<ST, 3, 3>
bopBending(
const Eigen::Matrix<ST, 2, 3>& jcur,
const Eigen::Matrix3<ST>& h,
const auto& dN,
389 const auto& ddN,
const int node,
const Eigen::Vector3<ST>& a3N,
390 const Eigen::Vector3<ST>& a3)
const {
391 const Eigen::Matrix<ST, 3, 3> a1dxI =
392 Eigen::Matrix<double, 3, 3>::Identity() * dN(node, 0);
394 const Eigen::Matrix<ST, 3, 3> a2dxI = Eigen::Matrix<double, 3, 3>::Identity() * dN(node, 1);
395 const auto a1 = jcur.row(0);
396 const auto a2 = jcur.row(1);
397 const Eigen::Matrix<ST, 3, 3> a3NdI =
398 a1dxI.colwise().cross(a2) - a2dxI.colwise().cross(a1);
400 const Eigen::Matrix<ST, 3, 3> a3d1 =
401 1.0 / a3N.norm() * (Eigen::Matrix<double, 3, 3>::Identity() - a3 * a3.transpose()) * a3NdI;
403 Eigen::Matrix<ST, 3, 3> bop = -(h * a3d1 + (a3 * ddN.row(node)).
transpose());
415 Eigen::Matrix<double, 3, 3>
materialTangent(
const Eigen::Matrix<double, 3, 3>& Aconv)
const {
416 const double lambda = mat_.emodul * mat_.nu / ((1.0 + mat_.nu) * (1.0 - 2.0 * mat_.nu));
417 const double mu = mat_.emodul / (2.0 * (1.0 + mat_.nu));
418 const double lambdbar = 2.0 * lambda * mu / (lambda + 2.0 * mu);
419 Eigen::TensorFixedSize<double, Eigen::Sizes<3, 3, 3, 3>> moduli;
420 const auto AconvT =
tensorView(Aconv, std::array<Eigen::Index, 2>({3, 3}));
421 moduli = lambdbar *
dyadic(AconvT, AconvT).eval() + 2.0 * mu * symmetricFourthOrder<double>(Aconv, Aconv);
424 Eigen::Matrix<double, 3, 3> C33 = C({0, 1, 5}, {0, 1, 5});
Helper for the autodiff library.
Definitions of ResultTypes used for finite element results.
Material property functions and conversion utilities.
Definition of the LinearElastic class for finite element mechanics computations.
Implementation of membrane strain for shells.
Header file for types of loads in Ikarus finite element mechanics.
Derived skew(const Eigen::MatrixBase< Derived > &A)
Returns the skew part of a matrix.
Definition: linearalgebrahelper.hh:410
auto viewAsEigenMatrixAsDynFixed(Dune::BlockVector< ValueType > &blockedVector)
View Dune::BlockVector as an Eigen::Matrix with dynamic rows and fixed columns depending on the size ...
Definition: linearalgebrahelper.hh:88
constexpr Eigen::Index toVoigt(Eigen::Index i, Eigen::Index j) noexcept
Converts 2D indices to Voigt notation index.
Definition: tensorutils.hh:166
Eigen::Tensor< typename Derived::Scalar, rank > tensorView(const Eigen::EigenBase< Derived > &matrix, const std::array< T, rank > &dims)
View an Eigen matrix as an Eigen Tensor with specified dimensions.
Definition: tensorutils.hh:32
auto dyadic(const auto &A_ij, const auto &B_kl)
Computes the dyadic product of two Eigen tensors.
Definition: tensorutils.hh:47
Definition: assemblermanipulatorbuildingblocks.hh:22
MatrixAffordance
A strongly typed enum class representing the matrix affordance.
Definition: ferequirements.hh:63
VectorAffordance
A strongly typed enum class representing the vector affordance.
Definition: ferequirements.hh:48
auto transpose(const Eigen::EigenBase< Derived > &A)
auto kirchhoffLoveShell(const KlArgs &args)
A helper function to create a Kirchhoff-Love shell pre finite element.
Definition: kirchhoffloveshell.hh:445
constexpr std::string toString(DBCOption _e)
Definition: dirichletbcenforcement.hh:7
ScalarAffordance
A strongly typed enum class representing the scalar affordance.
Definition: ferequirements.hh:37
@ mechanicalPotentialEnergy
Definition: utils/dirichletvalues.hh:30
FE class is a base class for all finite elements.
Definition: febase.hh:79
FETraits< BH, useEigenRef, useFlat > Traits
Definition: febase.hh:38
Class representing the requirements for finite element calculations.
Definition: ferequirements.hh:252
SolutionVectorReturnType globalSolution()
Get the global solution vector.
Definition: ferequirements.hh:308
PMHelper::ConstReturnType parameter() const
Get the parameter value.
Definition: ferequirements.hh:325
Container that is used for FE Results. It gives access to the stored value, but can also be used to a...
Definition: feresulttypes.hh:159
Base class for element definitions that provides common functionality for ResultTypes.
Definition: feresulttypes.hh:272
Traits for handling finite elements.
Definition: fetraits.hh:25
typename Basis::LocalView LocalView
Type of the local view.
Definition: fetraits.hh:42
typename Element::Geometry Geometry
Type of the element geometry.
Definition: fetraits.hh:51
BH BasisHandler
Type of the basis of the finite element.
Definition: fetraits.hh:27
typename Basis::GridView GridView
Type of the grid view.
Definition: fetraits.hh:45
static constexpr int worlddim
Dimension of the world space.
Definition: fetraits.hh:60
typename BasisHandler::FlatBasis FlatBasis
Type of the flat basis.
Definition: fetraits.hh:33
typename LocalView::Element Element
Type of the grid element.
Definition: fetraits.hh:48
static constexpr int mydim
Dimension of the geometry.
Definition: fetraits.hh:63
Kirchhoff-Love shell finite element class.
Definition: kirchhoffloveshell.hh:51
Eigen::Matrix< double, 3, 3 > materialTangent(const Eigen::Matrix< double, 3, 3 > &Aconv) const
Gets the material tangent matrix for the linear elastic material.
Definition: kirchhoffloveshell.hh:415
typename Traits::Element Element
Definition: kirchhoffloveshell.hh:61
typename Traits::Geometry Geometry
Definition: kirchhoffloveshell.hh:59
void calculateVectorImpl(const Requirement &par, const VectorAffordance &affordance, typename Traits::template VectorType< ST > force, const std::optional< std::reference_wrapper< const Eigen::VectorX< ST > > > &dx=std::nullopt) const
Definition: kirchhoffloveshell.hh:283
auto displacementFunction(const Requirement &par, const std::optional< std::reference_wrapper< const Eigen::VectorX< ST > > > &dx=std::nullopt) const
Get the displacement function and nodal displacements.
Definition: kirchhoffloveshell.hh:142
auto computeMaterialAndStrains(const Dune::FieldVector< double, 2 > &gpPos, int gpIndex, const Geometry &geo, const auto &uFunction) const
Compute material properties and strains at a given integration point.
Definition: kirchhoffloveshell.hh:201
size_t numberOfNodes() const
Definition: kirchhoffloveshell.hh:153
static constexpr int myDim
Definition: kirchhoffloveshell.hh:65
static constexpr int bendingStrainSize
Definition: kirchhoffloveshell.hh:68
auto calculateAtImpl(const Requirement &req, const Dune::FieldVector< double, Traits::mydim > &local) -> ResultWrapper< RT< double, myDim, worldDim >, ResultShape::Vector >
Calculates a requested result at a specific local position.
Definition: kirchhoffloveshell.hh:167
Geometry geometry() const
Definition: kirchhoffloveshell.hh:152
decltype(std::declval< LocalView >().tree().child(0).finiteElement().localBasis()) LocalBasisType
Definition: kirchhoffloveshell.hh:62
typename Traits::GridView GridView
Definition: kirchhoffloveshell.hh:60
static constexpr int worldDim
Definition: kirchhoffloveshell.hh:66
void bindImpl()
A helper function to bind the local view to the element.
Definition: kirchhoffloveshell.hh:108
typename Traits::FlatBasis FlatBasis
Definition: kirchhoffloveshell.hh:55
KirchhoffLoveShell(const Pre &pre)
Constructor for the KirchhoffLoveShell class.
Definition: kirchhoffloveshell.hh:100
void calculateMatrixImpl(const Requirement &par, const MatrixAffordance &affordance, typename Traits::template MatrixType< ST > K, const std::optional< std::reference_wrapper< const Eigen::VectorX< ST > > > &dx=std::nullopt) const
Definition: kirchhoffloveshell.hh:238
typename Traits::LocalView LocalView
Definition: kirchhoffloveshell.hh:58
typename Traits::BasisHandler BasisHandler
Definition: kirchhoffloveshell.hh:54
Eigen::Matrix< ST, 3, 3 > kgBending(const Eigen::Matrix< ST, 2, 3 > &jcur, const Eigen::Matrix3< ST > &h, const auto &dN, const auto &ddN, const Eigen::Vector3< ST > &a3N, const Eigen::Vector3< ST > &a3, const Eigen::Vector3< ST > &S, int I, int J) const
Definition: kirchhoffloveshell.hh:342
Eigen::Matrix< ST, 3, 3 > bopBending(const Eigen::Matrix< ST, 2, 3 > &jcur, const Eigen::Matrix3< ST > &h, const auto &dN, const auto &ddN, const int node, const Eigen::Vector3< ST > &a3N, const Eigen::Vector3< ST > &a3) const
Definition: kirchhoffloveshell.hh:388
static constexpr int membraneStrainSize
Definition: kirchhoffloveshell.hh:67
auto calculateScalarImpl(const Requirement &par, const ScalarAffordance &affordance, const std::optional< std::reference_wrapper< const Eigen::VectorX< ST > > > &dx=std::nullopt) const -> ST
Definition: kirchhoffloveshell.hh:316
int order() const
Definition: kirchhoffloveshell.hh:154
A PreFE struct for Kirchhoff-Love shell elements.
Definition: kirchhoffloveshell.hh:31
double thickness
Definition: kirchhoffloveshell.hh:33
YoungsModulusAndPoissonsRatio material
Definition: kirchhoffloveshell.hh:32
A structure representing kinematic variables.
Definition: kirchhoffloveshell.hh:81
Eigen::Matrix3< double > H
Hessian of the reference geometry.
Definition: kirchhoffloveshell.hh:88
Eigen::Vector3< ST > kappaV
bending strain in Voigt notation
Definition: kirchhoffloveshell.hh:84
Eigen::Matrix< double, 3, 3 > C
material tangent
Definition: kirchhoffloveshell.hh:82
Eigen::Matrix< ST, 2, 3 > j
Jacobian of the deformed geometry.
Definition: kirchhoffloveshell.hh:85
Eigen::Vector3< ST > epsV
membrane strain in Voigt notation
Definition: kirchhoffloveshell.hh:83
Eigen::Matrix3< ST > h
Hessian of the deformed geometry.
Definition: kirchhoffloveshell.hh:87
Eigen::Vector3< ST > a3N
Normal vector of the deformed geometry.
Definition: kirchhoffloveshell.hh:89
Eigen::Vector3< ST > a3
normalized normal vector of the deformed geometry
Definition: kirchhoffloveshell.hh:90
Eigen::Matrix< double, 2, 3 > J
Jacobian of the reference geometry.
Definition: kirchhoffloveshell.hh:86
A struct containing information about the Youngs Modulus, Poisson's ratio and the thickness for the K...
Definition: kirchhoffloveshell.hh:434
double youngs_modulus
Definition: kirchhoffloveshell.hh:435
double nu
Definition: kirchhoffloveshell.hh:436
double thickness
Definition: kirchhoffloveshell.hh:437
static auto derivative(const Dune::FieldVector< double, 2 > &gpPos, const Eigen::Matrix< ST, 2, 3 > &jcur, const auto &dNAtGp, const GEO &geo, const auto &uFunction, const auto &localBasis, const int node)
Compute the strain-displacement matrix for a given node and integration point.
Definition: membranestrains.hh:65
static auto secondDerivative(const Dune::FieldVector< double, 2 > &gpPos, const auto &dNAtGp, const GEO &geo, const auto &uFunction, const auto &localBasis, const Eigen::Vector3< ST > &S, int I, int J)
Compute the second derivative of the membrane strain for a given node pair and integration point.
Definition: membranestrains.hh:96
static auto value(const Dune::FieldVector< double, 2 > &gpPos, const GEO &geo, const auto &uFunction) -> Eigen::Vector3< typename std::remove_cvref_t< decltype(uFunction)>::ctype >
Compute the strain vector at a given integration point.
Definition: membranestrains.hh:31
see https://en.wikipedia.org/wiki/Lam%C3%A9_parameters Structure representing Young's modulus and she...
Definition: physicshelper.hh:19
Definition: utils/dirichletvalues.hh:32