40 static constexpr int dim = 3;
43 using MaterialTensor = Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim>>;
57 [[nodiscard]]
constexpr static std::string
nameImpl() noexcept {
return "NeoHooke"; }
64 : materialParameter_{mpt} {}
77 template <
typename Derived>
79 static_assert(Concepts::EigenMatrixOrVoigtNotation3<Derived>);
81 const auto traceC = C.trace();
82 const auto detC = C.determinant();
83 Impl::checkPositiveOrAbort(detC);
84 const auto logdetF = log(sqrt(detC));
85 return materialParameter_.
mu / 2.0 * (traceC - 3 - 2 * logdetF) +
86 materialParameter_.
lambda / 2.0 * logdetF * logdetF;
89 "NeoHooke energy can only be called with a matrix and not a vector in Voigt notation");
99 template <
bool voigt,
typename Derived>
101 static_assert(Concepts::EigenMatrixOrVoigtNotation3<Derived>);
102 if constexpr (!voigt) {
104 const auto detC = C.determinant();
105 Impl::checkPositiveOrAbort(detC);
106 const auto logdetF = log(sqrt(detC));
107 const auto invC = C.inverse().eval();
108 return (materialParameter_.
mu * (StrainMatrix::Identity() - invC) + materialParameter_.
lambda * logdetF * invC)
112 "NeoHooke can only be called with a matrix and not a vector in Voigt notation");
114 static_assert(voigt ==
false,
"NeoHooke does not support returning stresses in Voigt notation");
124 template <
bool voigt,
typename Derived>
126 static_assert(Concepts::EigenMatrixOrVoigtNotation3<Derived>);
127 if constexpr (!voigt) {
128 const auto invC = C.inverse().eval();
129 const auto detC = C.determinant();
130 Impl::checkPositiveOrAbort(detC);
131 const auto logdetF = log(sqrt(detC));
132 const auto CTinv =
tensorView(invC, std::array<Eigen::Index, 2>({3, 3}));
135 2 * (materialParameter_.
mu - materialParameter_.
lambda * logdetF) *
140 static_assert(voigt ==
false,
"NeoHooke does not support returning tangent moduli in Voigt notation");
148 template <
typename STO>
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Eigen::Tensor< typename Derived::Scalar, rank > tensorView(const Eigen::EigenBase< Derived > &matrix, const std::array< T, rank > &dims)
View an Eigen matrix as an Eigen Tensor with specified dimensions.
Definition: tensorutils.hh:32
auto fourthOrderIKJL(const Eigen::MatrixBase< AType > &A, const Eigen::MatrixBase< BType > &B)
Computes the IKJL product of two matrices.
Definition: tensorutils.hh:135
auto dyadic(const auto &A_ij, const auto &B_kl)
Computes the dyadic product of two Eigen tensors.
Definition: tensorutils.hh:47
auto symTwoSlots(const Eigen::TensorFixedSize< ScalarType, Eigen::Sizes< dim, dim, dim, dim > > &t, const std::array< size_t, 2 > &slots)
Creates a symmetric fourth-order tensor in the two specified slots of the input tensor.
Definition: tensorutils.hh:158
Definition: arrudaboyce.hh:27
Implementation of the Neo-Hookean material model.The energy is computed as.
Definition: neohooke.hh:38
auto rebind() const
Rebinds the material to a different scalar type.
Definition: neohooke.hh:149
ST ScalarType
Definition: neohooke.hh:39
StrainMatrix StressMatrix
Definition: neohooke.hh:42
MaterialParameters materialParametersImpl() const
Returns the material parameters stored in the material.
Definition: neohooke.hh:69
static constexpr bool moduliAcceptsVoigt
Definition: neohooke.hh:54
static constexpr int dim
Definition: neohooke.hh:40
static constexpr bool moduliToVoigt
Definition: neohooke.hh:53
static constexpr bool stressToVoigt
Definition: neohooke.hh:51
static constexpr bool stressAcceptsVoigt
Definition: neohooke.hh:52
Eigen::TensorFixedSize< ScalarType, Eigen::Sizes< dim, dim, dim, dim > > MaterialTensor
Definition: neohooke.hh:43
static constexpr auto stressTag
Definition: neohooke.hh:48
ScalarType storedEnergyImpl(const Eigen::MatrixBase< Derived > &C) const
Computes the stored energy in the Neo-Hookean material model.
Definition: neohooke.hh:78
MaterialTensor tangentModuliImpl(const Eigen::MatrixBase< Derived > &C) const
Computes the tangent moduli in the Neo-Hookean material model.
Definition: neohooke.hh:125
NeoHookeT(const MaterialParameters &mpt)
Constructor for NeoHookeT.
Definition: neohooke.hh:63
StressMatrix stressesImpl(const Eigen::MatrixBase< Derived > &C) const
Computes the stresses in the Neo-Hookean material model.
Definition: neohooke.hh:100
static constexpr auto strainTag
Definition: neohooke.hh:47
Eigen::Matrix< ScalarType, dim, dim > StrainMatrix
Definition: neohooke.hh:41
static constexpr std::string nameImpl() noexcept
Definition: neohooke.hh:57
static constexpr bool energyAcceptsVoigt
Definition: neohooke.hh:50
LamesFirstParameterAndShearModulus MaterialParameters
Definition: neohooke.hh:45
static constexpr double derivativeFactorImpl
Definition: neohooke.hh:55
static constexpr auto tangentModuliTag
Definition: neohooke.hh:49
Interface classf or materials.
Definition: finiteelements/mechanics/materials/interface.hh:80
Definition: physicshelper.hh:54
double lambda
Definition: physicshelper.hh:55
double mu
Definition: physicshelper.hh:56
Concept defining the requirements for Eigen vectors.
Definition: utils/concepts.hh:362
Contains the Material interface class and related template functions for material properties.