53template <
typename ST_>
56 static constexpr int dim = 3;
59 template <
typename ST = ScalarType>
61 template <
typename ST = ScalarType>
64 template <
typename ST = ScalarType>
66 template <
typename ST = ScalarType>
74 [[nodiscard]]
constexpr static std::string
name() noexcept {
return "ArrudaBoyce"; }
97 template <
typename ST>
102 const auto W1 = devInvariants.
value()[0];
103 const auto mu = matPar_.
mu;
104 const auto lambdaM = matPar_.
lambdaM;
105 const auto beta = 1 / pow(lambdaM, 2.0);
107 for (
const auto i : parameterRange())
108 energy += alphas_[i] * pow(beta, i) * (pow(W1, i + 1) - pow(3, i + 1));
121 template <
typename ST>
127 const auto W1 = devInvariants.
value()[0];
128 const auto& dW1dLambda = devInvariants.firstDerivative().first;
129 const auto mu = matPar_.
mu;
130 const auto lambdaM = matPar_.
lambdaM;
131 const auto beta = 1 / pow(lambdaM, 2.0);
133 for (
const auto j : parameterRange())
134 for (
const auto k : dimensionRange())
135 dWdLambda[k] += mu * alphas_[j] * pow(beta, j) * pow(W1, j) * dW1dLambda[k] * (j + 1);
147 template <
typename ST>
153 const auto W1 = devInvariants.
value()[0];
154 const auto& dW1dLambda = devInvariants.firstDerivative().first;
155 const auto& ddW1dLambda = devInvariants.secondDerivative().first;
156 const auto mu = matPar_.
mu;
157 const auto lambdaM = matPar_.
lambdaM;
158 const auto beta = 1 / pow(lambdaM, 2.0);
160 const auto dW1dLambdaDyad =
dyadic(dW1dLambda, dW1dLambda);
161 for (
const auto p : parameterRange()) {
162 const auto factor1 = mu * alphas_[p] * pow(beta, p);
163 const auto factor2 = pow(W1, p) * ddW1dLambda * (p + 1);
164 const auto factor3 = pow(W1, p - 1) * dW1dLambdaDyad * p * (p + 1);
165 dS += factor1 * (factor2 + factor3);
166 dS.diagonal() -= (dW1dLambda.array() / lambda.array() * factor1 * pow(W1, p) * (p + 1)).matrix();
177 template <
typename STO>
184 static constexpr std::array<double, numTerms> alphas_ = {0.5, 1.0 / 20.0, 11.0 / 1050.0, 19.0 / 7000.0,
187 inline static constexpr auto parameterRange() {
return Dune::range(
numTerms); }
188 inline static constexpr auto dimensionRange() {
return Dune::range(
dim); }
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Implementation of the computation of the deviatoric invariants and its derivatives.
auto dyadic(const auto &A_ij, const auto &B_kl)
Computes the dyadic product of two Eigen tensors.
Definition: tensorutils.hh:47
Definition: assemblermanipulatorbuildingblocks.hh:22
Definition: arrudaboyce.hh:27
< Structure representing material parameters for the Arrudy-Boyce material model.
Definition: arrudaboyce.hh:21
double mu
Denotes the shear modulus.
Definition: arrudaboyce.hh:22
double lambdaM
Denotes the maximum (fully extended) stretch that a molecule is exposed to.
Definition: arrudaboyce.hh:23
Implementation of the ArrudaBoyce material model (also referred as Eight-Chain model).
Definition: arrudaboyce.hh:55
SecondDerivative< ST > secondDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the second derivatives of the stored energy function w.r.t. the total principal stretches.
Definition: arrudaboyce.hh:148
Eigen::Vector< ST, 3 > PrincipalStretches
Definition: arrudaboyce.hh:60
ArrudaBoyceT(const MaterialParameters &matPar)
Constructor for ArrudaBoyceT.
Definition: arrudaboyce.hh:81
static constexpr int dim
Definition: arrudaboyce.hh:56
static constexpr auto stretchTag
Definition: arrudaboyce.hh:72
PrincipalStretches< ST > Invariants
Definition: arrudaboyce.hh:62
static constexpr int numTerms
Definition: arrudaboyce.hh:70
MaterialParameters materialParametersImpl() const
Returns the material parameters stored in the material.
Definition: arrudaboyce.hh:87
auto rebind() const
Rebinds the material to a different scalar type.
Definition: arrudaboyce.hh:178
static constexpr std::string name() noexcept
Definition: arrudaboyce.hh:74
Eigen::Vector< ST, dim > FirstDerivative
Definition: arrudaboyce.hh:65
Eigen::Matrix< ST, dim, dim > SecondDerivative
Definition: arrudaboyce.hh:67
ArrudaBoyceMatParameters MaterialParameters
Definition: arrudaboyce.hh:69
ST storedEnergyImpl(const PrincipalStretches< ST > &lambda) const
Computes the stored energy in the ArrudaBoyce material model.
Definition: arrudaboyce.hh:98
FirstDerivative< ST > firstDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the first derivative of the stored energy function w.r.t. the total principal stretches.
Definition: arrudaboyce.hh:122
ST_ ScalarType
Definition: arrudaboyce.hh:57
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55