version 0.4.1
arrudaboyce.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
10#pragma once
11
16
17namespace Ikarus {
18
21{
22 double mu;
23 double lambdaM;
24};
25} // namespace Ikarus
26
28
53template <typename ST_>
55{
56 static constexpr int dim = 3;
57 using ScalarType = ST_;
58
59 template <typename ST = ScalarType>
60 using PrincipalStretches = Eigen::Vector<ST, 3>;
61 template <typename ST = ScalarType>
63
64 template <typename ST = ScalarType>
65 using FirstDerivative = Eigen::Vector<ST, dim>;
66 template <typename ST = ScalarType>
67 using SecondDerivative = Eigen::Matrix<ST, dim, dim>;
68
70 static constexpr int numTerms = 5;
71
73
74 [[nodiscard]] constexpr static std::string name() noexcept { return "ArrudaBoyce"; }
75
81 explicit ArrudaBoyceT(const MaterialParameters& matPar)
82 : matPar_{matPar} {}
83
87 MaterialParameters materialParametersImpl() const { return matPar_; }
88
97 template <typename ST>
98 ST storedEnergyImpl(const PrincipalStretches<ST>& lambda) const {
99 const Invariants<ST>& invariants = Impl::invariants(lambda);
100 ST energy{0.0};
101 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
102 const auto W1 = devInvariants.value()[0];
103 const auto mu = matPar_.mu;
104 const auto lambdaM = matPar_.lambdaM;
105 const auto beta = 1 / pow(lambdaM, 2.0);
106
107 for (const auto i : parameterRange())
108 energy += alphas_[i] * pow(beta, i) * (pow(W1, i + 1) - pow(3, i + 1));
109 energy *= mu;
110
111 return energy;
112 }
113
121 template <typename ST>
123 const Invariants<ST>& invariants = Impl::invariants(lambda);
124 auto dWdLambda = FirstDerivative<ST>::Zero().eval();
125
126 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
127 const auto W1 = devInvariants.value()[0];
128 const auto& dW1dLambda = devInvariants.firstDerivative().first;
129 const auto mu = matPar_.mu;
130 const auto lambdaM = matPar_.lambdaM;
131 const auto beta = 1 / pow(lambdaM, 2.0);
132
133 for (const auto j : parameterRange())
134 for (const auto k : dimensionRange())
135 dWdLambda[k] += mu * alphas_[j] * pow(beta, j) * pow(W1, j) * dW1dLambda[k] * (j + 1);
136
137 return dWdLambda;
138 }
139
147 template <typename ST>
149 const Invariants<ST>& invariants = Impl::invariants(lambda);
150 auto dS = SecondDerivative<ST>::Zero().eval();
151
152 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
153 const auto W1 = devInvariants.value()[0];
154 const auto& dW1dLambda = devInvariants.firstDerivative().first;
155 const auto& ddW1dLambda = devInvariants.secondDerivative().first;
156 const auto mu = matPar_.mu;
157 const auto lambdaM = matPar_.lambdaM;
158 const auto beta = 1 / pow(lambdaM, 2.0);
159
160 const auto dW1dLambdaDyad = dyadic(dW1dLambda, dW1dLambda);
161 for (const auto p : parameterRange()) {
162 const auto factor1 = mu * alphas_[p] * pow(beta, p);
163 const auto factor2 = pow(W1, p) * ddW1dLambda * (p + 1);
164 const auto factor3 = pow(W1, p - 1) * dW1dLambdaDyad * p * (p + 1);
165 dS += factor1 * (factor2 + factor3);
166 dS.diagonal() -= (dW1dLambda.array() / lambda.array() * factor1 * pow(W1, p) * (p + 1)).matrix();
167 }
168
169 return dS;
170 }
171
177 template <typename STO>
178 auto rebind() const {
179 return ArrudaBoyceT<STO>(matPar_);
180 }
181
182private:
183 MaterialParameters matPar_;
184 static constexpr std::array<double, numTerms> alphas_ = {0.5, 1.0 / 20.0, 11.0 / 1050.0, 19.0 / 7000.0,
185 519.0 / 673750.0};
186
187 inline static constexpr auto parameterRange() { return Dune::range(numTerms); }
188 inline static constexpr auto dimensionRange() { return Dune::range(dim); }
189};
190
195
196} // namespace Ikarus::Materials
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Implementation of the computation of the deviatoric invariants and its derivatives.
auto dyadic(const auto &A_ij, const auto &B_kl)
Computes the dyadic product of two Eigen tensors.
Definition: tensorutils.hh:47
Definition: assemblermanipulatorbuildingblocks.hh:22
Definition: arrudaboyce.hh:27
< Structure representing material parameters for the Arrudy-Boyce material model.
Definition: arrudaboyce.hh:21
double mu
Denotes the shear modulus.
Definition: arrudaboyce.hh:22
double lambdaM
Denotes the maximum (fully extended) stretch that a molecule is exposed to.
Definition: arrudaboyce.hh:23
Implementation of the ArrudaBoyce material model (also referred as Eight-Chain model).
Definition: arrudaboyce.hh:55
SecondDerivative< ST > secondDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the second derivatives of the stored energy function w.r.t. the total principal stretches.
Definition: arrudaboyce.hh:148
Eigen::Vector< ST, 3 > PrincipalStretches
Definition: arrudaboyce.hh:60
ArrudaBoyceT(const MaterialParameters &matPar)
Constructor for ArrudaBoyceT.
Definition: arrudaboyce.hh:81
static constexpr int dim
Definition: arrudaboyce.hh:56
static constexpr auto stretchTag
Definition: arrudaboyce.hh:72
PrincipalStretches< ST > Invariants
Definition: arrudaboyce.hh:62
static constexpr int numTerms
Definition: arrudaboyce.hh:70
MaterialParameters materialParametersImpl() const
Returns the material parameters stored in the material.
Definition: arrudaboyce.hh:87
auto rebind() const
Rebinds the material to a different scalar type.
Definition: arrudaboyce.hh:178
static constexpr std::string name() noexcept
Definition: arrudaboyce.hh:74
Eigen::Vector< ST, dim > FirstDerivative
Definition: arrudaboyce.hh:65
Eigen::Matrix< ST, dim, dim > SecondDerivative
Definition: arrudaboyce.hh:67
ArrudaBoyceMatParameters MaterialParameters
Definition: arrudaboyce.hh:69
ST storedEnergyImpl(const PrincipalStretches< ST > &lambda) const
Computes the stored energy in the ArrudaBoyce material model.
Definition: arrudaboyce.hh:98
FirstDerivative< ST > firstDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the first derivative of the stored energy function w.r.t. the total principal stretches.
Definition: arrudaboyce.hh:122
ST_ ScalarType
Definition: arrudaboyce.hh:57
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55