52template <
typename ST_>
55 static constexpr int dim = 3;
58 template <
typename ST = ScalarType>
61 template <
typename ST = ScalarType>
64 template <
typename ST = ScalarType>
66 template <
typename ST = ScalarType>
73 [[nodiscard]]
constexpr static std::string
name() noexcept {
return "Gent"; }
97 template <
typename ST = ScalarType>
101 const auto W1 = devInvariants.
value()[0];
103 return -(matPar_.
mu / 2.0) * matPar_.
Jm * log(1.0 - ((W1 - 3.0) / matPar_.
Jm));
113 template <
typename ST = ScalarType>
117 const auto W1 = devInvariants.
value()[0];
118 const auto& dW1dLambda = devInvariants.firstDerivative().first;
119 const auto mu = matPar_.
mu;
120 const auto Jm = matPar_.
Jm;
135 template <
typename ST = ScalarType>
141 const auto W1 = devInvariants.
value()[0];
142 const auto& dW1dLambda = devInvariants.firstDerivative().first;
143 const auto& ddW1dLambda = devInvariants.secondDerivative().first;
144 const auto mu = matPar_.
mu;
145 const auto Jm = matPar_.
Jm;
148 for (
const auto i : dimensionRange())
149 for (
const auto j : dimensionRange()) {
150 auto factor1 = 1.0 - ((W1 - 3.0) / Jm);
151 dS(i, j) += (mu / (2.0 * factor1)) * (ddW1dLambda(i, j) + (dW1dLambda[i] * dW1dLambda[j] / (factor1 * Jm)));
153 dS(i, j) -= (mu / (2.0 * lambda[i] * factor1)) * dW1dLambda[i];
164 template <
typename STO>
172 inline static constexpr auto dimensionRange() {
return Dune::range(
dim); }
175 if (Dune::FloatCmp::le(matPar_.Jm,
static_cast<double>(W1) - 3.0, 1e-14))
176 DUNE_THROW(Dune::InvalidStateException,
"The material parameter Jm should be greater than (W1 - 3)");
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Implementation of the computation of the deviatoric invariants and its derivatives.
Definition: assemblermanipulatorbuildingblocks.hh:22
Definition: arrudaboyce.hh:27
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55
< Structure representing material parameters for the Gent material model.
Definition: gent.hh:21
double mu
Denotes the shear modulus.
Definition: gent.hh:22
double Jm
Denotes a dimensionless parameter that controls the extensibility of chains.
Definition: gent.hh:23
Implementation of the Gent material model.
Definition: gent.hh:54
ST_ ScalarType
Definition: gent.hh:56
static constexpr auto stretchTag
Definition: gent.hh:71
Eigen::Vector< ST, dim > FirstDerivative
Definition: gent.hh:65
SecondDerivative< ST > secondDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the second derivatives of the stored energy function w.r.t. the total principal stretches.
Definition: gent.hh:136
GentT(const MaterialParameters &matPar)
Constructor for GentT.
Definition: gent.hh:81
auto rebind() const
Rebinds the material to a different scalar type.
Definition: gent.hh:165
ST storedEnergyImpl(const PrincipalStretches< ST > &lambda) const
Computes the stored energy in the Gent material model.
Definition: gent.hh:98
static constexpr std::string name() noexcept
Definition: gent.hh:73
MaterialParameters materialParametersImpl() const
Returns the material parameters stored in the material.
Definition: gent.hh:87
PrincipalStretches< ST > Invariants
Definition: gent.hh:62
Eigen::Matrix< ST, dim, dim > SecondDerivative
Definition: gent.hh:67
static constexpr int dim
Definition: gent.hh:55
FirstDerivative< ST > firstDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the first derivative of the stored energy function w.r.t. the total principal stretches.
Definition: gent.hh:114
Eigen::Vector< ST, 3 > PrincipalStretches
Definition: gent.hh:59
GentMatParameters MaterialParameters
Definition: gent.hh:69