version 0.4.1
invariantbased.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
10#pragma once
11
16
17namespace Ikarus::Materials {
18
34template <typename ST_, int n>
36{
37 using ScalarType = ST_;
38
39 template <typename ST = ScalarType>
40 using PrincipalStretches = Eigen::Vector<ST, 3>;
41 template <typename ST = ScalarType>
43
44 static constexpr int dim = 3;
45 static constexpr int numMatParameters = n;
46
47 using Exponents = std::array<std::size_t, numMatParameters>;
48 using MaterialParameters = std::array<double, numMatParameters>;
49
50 template <typename ST = ScalarType>
51 using FirstDerivative = Eigen::Vector<ST, dim>;
52 template <typename ST = ScalarType>
53 using SecondDerivative = Eigen::Matrix<ST, dim, dim>;
54
56
57 [[nodiscard]] constexpr static std::string name() noexcept {
58 return "InvariantBased (n = " + std::to_string(numMatParameters);
59 }
60
61 MaterialParameters materialParametersImpl() const { return matParameters_; }
62
63 const Exponents& pExponents() const { return pex_; }
64
65 const Exponents& qExponents() const { return qex_; }
66
74 explicit InvariantBasedT(const Exponents& pex, const Exponents& qex, const MaterialParameters& matParameters)
75 : pex_{pex},
76 qex_{qex},
77 matParameters_{matParameters} {
78 checkExponents();
79 }
80
88 template <typename ST = ScalarType>
89 ST storedEnergyImpl(const PrincipalStretches<ST>& lambda) const {
90 const Invariants<ST>& invariants = Impl::invariants(lambda);
91 ST energy{0.0};
92 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
93 auto [W1, W2] = devInvariants.value();
94 W1 -= 3.0;
95 W2 -= 3.0;
96
97 for (const auto i : parameterRange())
98 energy += matParameters_[i] * pow(W1, pex_[i]) * pow(W2, qex_[i]);
99
100 return energy;
101 }
102
110 template <typename ST = ScalarType>
112 const Invariants<ST>& invariants = Impl::invariants(lambda);
113 auto dWdLambda = FirstDerivative<ST>::Zero().eval();
114
115 const auto& mu = matParameters_;
116 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
117 auto [W1, W2] = devInvariants.value();
118 W1 -= 3.0;
119 W2 -= 3.0;
120 const auto& [dW1dLambda, dW2dLambda] = devInvariants.firstDerivative();
121
122 for (const auto p : parameterRange())
123 for (const auto k : dimensionRange()) {
124 auto W1pm1p = powerAndMultiply<ST>(W1, pex_[p] - 1.0, pex_[p]);
125 auto W2qm1q = powerAndMultiply<ST>(W2, qex_[p] - 1.0, qex_[p]);
126 dWdLambda[k] +=
127 mu[p] * ((W1pm1p * pow(W2, qex_[p]) * dW1dLambda[k]) + (pow(W1, pex_[p]) * W2qm1q * dW2dLambda[k]));
128 }
129
130 return dWdLambda;
131 }
132
140 template <typename ST = ScalarType>
142 const Invariants<ST>& invariants = Impl::invariants(lambda);
143 auto dS = SecondDerivative<ST>::Zero().eval();
144
145 const auto& mu = matParameters_;
146 const auto& devInvariants = DeviatoricInvariants<PrincipalStretches<ST>>(lambda);
147 auto [W1, W2] = devInvariants.value();
148 W1 -= 3.0;
149 W2 -= 3.0;
150 const auto& [dW1dLambda, dW2dLambda] = devInvariants.firstDerivative();
151 const auto& [ddW1dLambda, ddW2dLambda] = devInvariants.secondDerivative();
152
153 for (const auto p : parameterRange())
154 for (const auto i : dimensionRange())
155 for (const auto j : dimensionRange()) {
156 auto W1pm1p = powerAndMultiply<ST>(W1, pex_[p] - 1.0, pex_[p]);
157 auto W2qm1q = powerAndMultiply<ST>(W2, qex_[p] - 1.0, qex_[p]);
158 auto W1pm2pp = powerAndMultiply<ST>(W1, pex_[p] - 2.0, pex_[p] * (pex_[p] - 1.0));
159 auto W2qm2qq = powerAndMultiply<ST>(W2, qex_[p] - 2.0, qex_[p] * (qex_[p] - 1.0));
160 auto dW1W2dlambda = dW1dLambda[i] * dW2dLambda[j] + dW1dLambda[j] * dW2dLambda[i];
161 auto factor1 = (W2qm1q * dW1W2dlambda + pow(W2, qex_[p]) * ddW1dLambda(i, j)) * W1pm1p * mu[p];
162 auto factor2 = W2qm1q * ddW2dLambda(i, j) * pow(W1, pex_[p]) * mu[p];
163 auto factor3 = W1pm2pp * pow(W2, qex_[p]) * dW1dLambda[i] * dW1dLambda[j] * mu[p];
164 auto factor4 = W2qm2qq * pow(W1, pex_[p]) * dW2dLambda[i] * dW2dLambda[j] * mu[p];
165 dS(i, j) += factor1 + factor2 + factor3 + factor4;
166 if (i == j) {
167 auto factor5 =
168 mu[p] * (W1pm1p * pow(W2, qex_[p]) * dW1dLambda[i] + pow(W1, pex_[p]) * W2qm1q * dW2dLambda[i]);
169 dS(i, j) -= (1.0 / lambda[i]) * factor5;
170 }
171 }
172 return dS;
173 }
174
180 template <typename STO>
181 auto rebind() const {
182 return InvariantBasedT<STO, numMatParameters>(pex_, qex_, matParameters_);
183 }
184
185private:
186 Exponents pex_, qex_;
187 MaterialParameters matParameters_;
188
189 inline static constexpr auto parameterRange() { return Dune::range(numMatParameters); }
190 inline static constexpr auto dimensionRange() { return Dune::range(dim); }
191
206 template <typename ST>
207 ST powerAndMultiply(ST x, int p, int m) const {
208 if (m == 0)
209 return 0; // anything multiplied with 0 is 0
210 if (p == 0)
211 return m; // x^0 * m = 1 * m = m
212 const double epsilon = std::numeric_limits<double>::epsilon();
213 assert(not(std::abs(x) < epsilon and p < 0) && "Raising zero to a negative power results in NaN.");
214 return std::pow(x, p) * m;
215 }
216
218 void checkExponents() const {
219 for (const auto i : parameterRange())
220 if (pex_[i] == 0 and qex_[i] == 0)
221 DUNE_THROW(Dune::InvalidStateException, "The exponent q" + std::to_string(i) + "and the exponent p" +
222 std::to_string(i) + "should not be zero at the same time.");
223 }
224};
225
229template <int n>
231
232} // namespace Ikarus::Materials
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Implementation of the computation of the deviatoric invariants and its derivatives.
Definition: arrudaboyce.hh:27
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
auto firstDerivative() const
Computation of the first derivatives of the deviatoric invariants w.r.t the total principal stretches...
Definition: deviatoricinvariants.hh:65
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55
Implementation of the InvariantBased material model.
Definition: invariantbased.hh:36
PrincipalStretches< ST > Invariants
Definition: invariantbased.hh:42
SecondDerivative< ST > secondDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the second derivatives of the stored energy function w.r.t. the total principal stretches.
Definition: invariantbased.hh:141
Eigen::Vector< ST, dim > FirstDerivative
Definition: invariantbased.hh:51
Eigen::Vector< ST, 3 > PrincipalStretches
Definition: invariantbased.hh:40
ST_ ScalarType
Definition: invariantbased.hh:37
std::array< std::size_t, numMatParameters > Exponents
Definition: invariantbased.hh:47
static constexpr std::string name() noexcept
Definition: invariantbased.hh:57
static constexpr auto stretchTag
Definition: invariantbased.hh:55
const Exponents & pExponents() const
Definition: invariantbased.hh:63
std::array< double, numMatParameters > MaterialParameters
Definition: invariantbased.hh:48
ST storedEnergyImpl(const PrincipalStretches< ST > &lambda) const
Computes the stored energy in the InvariantBased material model.
Definition: invariantbased.hh:89
static constexpr int dim
Definition: invariantbased.hh:44
auto rebind() const
Rebinds the material to a different scalar type.
Definition: invariantbased.hh:181
static constexpr int numMatParameters
Definition: invariantbased.hh:45
const Exponents & qExponents() const
Definition: invariantbased.hh:65
Eigen::Matrix< ST, dim, dim > SecondDerivative
Definition: invariantbased.hh:53
FirstDerivative< ST > firstDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the first derivative of the stored energy function w.r.t. the total principal stretches.
Definition: invariantbased.hh:111
InvariantBasedT(const Exponents &pex, const Exponents &qex, const MaterialParameters &matParameters)
Constructor for InvariantBasedT.
Definition: invariantbased.hh:74
MaterialParameters materialParametersImpl() const
Definition: invariantbased.hh:61