34template <
typename ST_,
int n>
39 template <
typename ST = ScalarType>
41 template <
typename ST = ScalarType>
44 static constexpr int dim = 3;
47 using Exponents = std::array<std::size_t, numMatParameters>;
50 template <
typename ST = ScalarType>
52 template <
typename ST = ScalarType>
57 [[nodiscard]]
constexpr static std::string
name() noexcept {
77 matParameters_{matParameters} {
88 template <
typename ST = ScalarType>
93 auto [W1, W2] = devInvariants.
value();
97 for (
const auto i : parameterRange())
98 energy += matParameters_[i] * pow(W1, pex_[i]) * pow(W2, qex_[i]);
110 template <
typename ST = ScalarType>
115 const auto& mu = matParameters_;
117 auto [W1, W2] = devInvariants.
value();
120 const auto& [dW1dLambda, dW2dLambda] = devInvariants.
firstDerivative();
122 for (
const auto p : parameterRange())
123 for (
const auto k : dimensionRange()) {
124 auto W1pm1p = powerAndMultiply<ST>(W1, pex_[p] - 1.0, pex_[p]);
125 auto W2qm1q = powerAndMultiply<ST>(W2, qex_[p] - 1.0, qex_[p]);
127 mu[p] * ((W1pm1p * pow(W2, qex_[p]) * dW1dLambda[k]) + (pow(W1, pex_[p]) * W2qm1q * dW2dLambda[k]));
140 template <
typename ST = ScalarType>
145 const auto& mu = matParameters_;
147 auto [W1, W2] = devInvariants.
value();
150 const auto& [dW1dLambda, dW2dLambda] = devInvariants.
firstDerivative();
151 const auto& [ddW1dLambda, ddW2dLambda] = devInvariants.secondDerivative();
153 for (
const auto p : parameterRange())
154 for (
const auto i : dimensionRange())
155 for (
const auto j : dimensionRange()) {
156 auto W1pm1p = powerAndMultiply<ST>(W1, pex_[p] - 1.0, pex_[p]);
157 auto W2qm1q = powerAndMultiply<ST>(W2, qex_[p] - 1.0, qex_[p]);
158 auto W1pm2pp = powerAndMultiply<ST>(W1, pex_[p] - 2.0, pex_[p] * (pex_[p] - 1.0));
159 auto W2qm2qq = powerAndMultiply<ST>(W2, qex_[p] - 2.0, qex_[p] * (qex_[p] - 1.0));
160 auto dW1W2dlambda = dW1dLambda[i] * dW2dLambda[j] + dW1dLambda[j] * dW2dLambda[i];
161 auto factor1 = (W2qm1q * dW1W2dlambda + pow(W2, qex_[p]) * ddW1dLambda(i, j)) * W1pm1p * mu[p];
162 auto factor2 = W2qm1q * ddW2dLambda(i, j) * pow(W1, pex_[p]) * mu[p];
163 auto factor3 = W1pm2pp * pow(W2, qex_[p]) * dW1dLambda[i] * dW1dLambda[j] * mu[p];
164 auto factor4 = W2qm2qq * pow(W1, pex_[p]) * dW2dLambda[i] * dW2dLambda[j] * mu[p];
165 dS(i, j) += factor1 + factor2 + factor3 + factor4;
168 mu[p] * (W1pm1p * pow(W2, qex_[p]) * dW1dLambda[i] + pow(W1, pex_[p]) * W2qm1q * dW2dLambda[i]);
169 dS(i, j) -= (1.0 / lambda[i]) * factor5;
180 template <
typename STO>
189 inline static constexpr auto parameterRange() {
return Dune::range(
numMatParameters); }
190 inline static constexpr auto dimensionRange() {
return Dune::range(
dim); }
206 template <
typename ST>
207 ST powerAndMultiply(ST x,
int p,
int m)
const {
212 const double epsilon = std::numeric_limits<double>::epsilon();
213 assert(not(std::abs(x) < epsilon and p < 0) &&
"Raising zero to a negative power results in NaN.");
214 return std::pow(x, p) * m;
218 void checkExponents()
const {
219 for (
const auto i : parameterRange())
220 if (pex_[i] == 0 and qex_[i] == 0)
221 DUNE_THROW(Dune::InvalidStateException,
"The exponent q" + std::to_string(i) +
"and the exponent p" +
222 std::to_string(i) +
"should not be zero at the same time.");
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Implementation of the computation of the deviatoric invariants and its derivatives.
Definition: arrudaboyce.hh:27
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
auto firstDerivative() const
Computation of the first derivatives of the deviatoric invariants w.r.t the total principal stretches...
Definition: deviatoricinvariants.hh:65
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55
Implementation of the InvariantBased material model.
Definition: invariantbased.hh:36
PrincipalStretches< ST > Invariants
Definition: invariantbased.hh:42
SecondDerivative< ST > secondDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the second derivatives of the stored energy function w.r.t. the total principal stretches.
Definition: invariantbased.hh:141
Eigen::Vector< ST, dim > FirstDerivative
Definition: invariantbased.hh:51
Eigen::Vector< ST, 3 > PrincipalStretches
Definition: invariantbased.hh:40
ST_ ScalarType
Definition: invariantbased.hh:37
std::array< std::size_t, numMatParameters > Exponents
Definition: invariantbased.hh:47
static constexpr std::string name() noexcept
Definition: invariantbased.hh:57
static constexpr auto stretchTag
Definition: invariantbased.hh:55
const Exponents & pExponents() const
Definition: invariantbased.hh:63
std::array< double, numMatParameters > MaterialParameters
Definition: invariantbased.hh:48
ST storedEnergyImpl(const PrincipalStretches< ST > &lambda) const
Computes the stored energy in the InvariantBased material model.
Definition: invariantbased.hh:89
static constexpr int dim
Definition: invariantbased.hh:44
auto rebind() const
Rebinds the material to a different scalar type.
Definition: invariantbased.hh:181
static constexpr int numMatParameters
Definition: invariantbased.hh:45
const Exponents & qExponents() const
Definition: invariantbased.hh:65
Eigen::Matrix< ST, dim, dim > SecondDerivative
Definition: invariantbased.hh:53
FirstDerivative< ST > firstDerivativeImpl(const PrincipalStretches< ST > &lambda) const
Computes the first derivative of the stored energy function w.r.t. the total principal stretches.
Definition: invariantbased.hh:111
InvariantBasedT(const Exponents &pex, const Exponents &qex, const MaterialParameters &matParameters)
Constructor for InvariantBasedT.
Definition: invariantbased.hh:74
MaterialParameters materialParametersImpl() const
Definition: invariantbased.hh:61