38 static constexpr int dim = PrincipalStretches::RowsAtCompileTime;
56 const Invariants& invariants = Impl::invariants(lambda_);
57 ScalarType W1 = invariants[0] * pow(invariants[2], -1.0 / 3.0);
58 ScalarType W2 = invariants[1] * pow(invariants[2], -2.0 / 3.0);
59 return std::array<ScalarType, 2>{W1, W2};
66 const Invariants& invariants = Impl::invariants(lambda_);
67 auto [I1, I2, I3, I3Pow1by3, I3Pow2by3] = computeInvariants(invariants);
69 FirstDerivative dW1dLambda = 2.0 * (3.0 * lambda_.cwisePow(2).array() - I1) / (3.0 * lambda_.array() * I3Pow1by3);
71 -2.0 * (3.0 * I3 * lambda_.cwisePow(2).cwiseInverse().array() - I2) / (3.0 * lambda_.array() * I3Pow2by3);
73 return std::make_pair(dW1dLambda, dW2dLambda);
80 const Invariants& invariants = Impl::invariants(lambda_);
81 auto ddW1dLambda = SecondDerivative::Zero().eval();
82 auto ddW2dLambda = SecondDerivative::Zero().eval();
83 auto [I1, I2, I3, I3Pow1by3, I3Pow2by3] = computeInvariants(invariants);
85 auto lam = lambda_.array();
86 ddW1dLambda.diagonal() = (2.0 / 9.0) * (5 * I1 - 3 * lam.square()) / (lam.square() * I3Pow1by3);
87 ddW2dLambda.diagonal() = (2.0 / 9.0) * ((15.0 * I3 / lam.square()) - I2) / (lam.square() * I3Pow2by3);
88 for (
const auto j : dimensionRange()) {
89 for (
const auto i : dimensionRange())
91 ddW1dLambda(i, j) = (4.0 / 9.0) * (I1 - 3 * (pow(lambda_[i], 2.0) + pow(lambda_[j], 2.0))) /
92 (lambda_[i] * lambda_[j] * I3Pow1by3);
93 ddW2dLambda(i, j) = (-4.0 / 9.0) * (2.0 * I2 - 3 * pow(lambda_[i], 2.0) * pow(lambda_[j], 2.0)) /
94 (lambda_[i] * lambda_[j] * I3Pow2by3);
97 return std::make_pair(ddW1dLambda, ddW2dLambda);
103 inline static constexpr auto dimensionRange() {
return Dune::range(
dim); }
105 auto computeInvariants(
const Invariants& invariants)
const {
112 return std::make_tuple(I1, I2, I3, I3Pow1by3, I3Pow2by3);
Helper for the Eigen::Tensor types.
helper functions used by material model implementations.
Definition of several material related enums.
Definition: arrudaboyce.hh:27
Implementation of the deviatoric invariants and its derivatives.
Definition: deviatoricinvariants.hh:35
DeviatoricInvariants(const PrincipalStretches &lambda)
Constructor for DeviatoricInvariants.
Definition: deviatoricinvariants.hh:49
static constexpr int dim
Definition: deviatoricinvariants.hh:38
Eigen::Matrix< ScalarType, dim, dim > SecondDerivative
Definition: deviatoricinvariants.hh:42
PS PrincipalStretches
Definition: deviatoricinvariants.hh:36
Eigen::Vector< ScalarType, dim > FirstDerivative
Definition: deviatoricinvariants.hh:41
auto firstDerivative() const
Computation of the first derivatives of the deviatoric invariants w.r.t the total principal stretches...
Definition: deviatoricinvariants.hh:65
auto value() const
Computation of value of the deviatoric invariants.
Definition: deviatoricinvariants.hh:55
PrincipalStretches::value_type ScalarType
Definition: deviatoricinvariants.hh:37
PrincipalStretches Invariants
Definition: deviatoricinvariants.hh:39
auto secondDerivative() const
Computation of the second derivatives of the deviatoric invariants w.r.t the total principal stretche...
Definition: deviatoricinvariants.hh:79