version 0.4.1
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
displacementgradienttransposed.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
12#pragma once
13
14#include <dune/common/fvector.hh>
15#include <dune/localfefunctions/eigenDuneTransformations.hh>
16#include <dune/localfefunctions/expressions/greenLagrangeStrains.hh>
17
18#include <Eigen/Core>
19
21
22namespace Ikarus::EAS {
31{
46 template <typename GEO, typename EAST>
47 static auto value(const GEO& geo, const auto& uFunction, const Dune::FieldVector<double, GEO::mydimension>& gpPos,
48 const EAST& easFunction, const auto& alpha) {
49 using ST = typename std::remove_cvref_t<decltype(uFunction)>::ctype;
50 constexpr int myDim = GEO::mydimension;
51 const Eigen::Matrix<ST, myDim, myDim> H = computeDisplacementGradient(geo, uFunction, gpPos, easFunction, alpha);
52 const Eigen::Matrix<ST, myDim, myDim> E = 0.5 * (H + H.transpose() + H.transpose() * H);
53 return toVoigt(E, true).eval();
54 }
55
76 template <int wrtCoeff, typename GEO, typename EAST>
77 static auto firstDerivative(const GEO& geo, const auto& uFunction, const auto& localBasis, const auto& gpIndex,
78 const Dune::FieldVector<double, GEO::mydimension>& gpPos, const EAST& easFunction,
79 const auto& alpha, const int node = sNaN) {
80 using namespace Dune::DerivativeDirections;
81 using namespace Dune;
82 using ST = typename std::remove_cvref_t<decltype(uFunction)>::ctype;
83 constexpr int myDim = GEO::mydimension;
84 constexpr int enhancedStrainSize = EAST::enhancedStrainSize;
85 static_assert(myDim == 2 or myDim == 3,
86 "An enhancement of displacement gradient (transposed) can only be performed for the 2D or 3D case.");
87 constexpr int strainSize = myDim * (myDim + 1) / 2;
88 using MatrixType = Eigen::Matrix<ST, myDim, myDim>;
89 const auto centerPos = centerPosition(geo);
90
91 const MatrixType F = computeDeformationGradient(geo, uFunction, gpPos, easFunction, alpha)
92 .transpose()
93 .eval(); // transposed such that the rows are u_{,1} and u_{,2}
94 const typename EAST::HType Harray = easFunction(gpPos);
95 const auto g0 = F.row(0);
96 const auto g1 = F.row(1);
97
98 if constexpr (wrtCoeff == 0) { // E,d
99 const auto gradUdI = uFunction.evaluateDerivative(gpPos, wrt(spatialAll, coeff(node)), on(gridElement));
100 const auto gradUdI0 = uFunction.evaluateDerivative(centerPos, wrt(spatialAll, coeff(node)), on(gridElement));
101 Eigen::Vector<ST, myDim> dN, dN0, dNtilde;
102 dNtilde.setZero();
103 for (const auto i : Dune::range(myDim)) {
104 dN[i] = getDiagonalEntry(gradUdI[i], 0);
105 dN0[i] = getDiagonalEntry(gradUdI0[i], 0);
106 }
107
108 for (const auto i : Dune::range(myDim))
109 for (const auto t : Dune::range(enhancedStrainSize))
110 for (const auto p : Dune::range(myDim))
111 dNtilde[i] += Harray[t](i, p) * alpha[t] * dN0[p];
112
113 dN += dNtilde;
114 Eigen::Matrix<ST, strainSize, myDim> bopI;
115 bopI.row(0) = dN[0] * g0;
116 bopI.row(1) = dN[1] * g1;
117 if constexpr (myDim == 2)
118 bopI.row(2) = dN[1] * g0 + dN[0] * g1;
119 else {
120 const auto g2 = F.row(2);
121 bopI.row(2) = dN[2] * g2;
122 bopI.row(3) = dN[2] * g1 + dN[1] * g2;
123 bopI.row(4) = dN[2] * g0 + dN[0] * g2;
124 bopI.row(5) = dN[1] * g0 + dN[0] * g1;
125 }
126 return bopI.eval();
127 } else if constexpr (wrtCoeff == 1) { // E,a
128 const MatrixType Fc0 = MatrixType::Identity() + compatibleDisplacementGradient<GEO>(uFunction, centerPos);
129 Eigen::Matrix<ST, strainSize, enhancedStrainSize> M;
130 M.setZero(); // zeros returned if Harray is empty
131 for (const auto q : Dune::range(enhancedStrainSize)) {
132 const MatrixType Htilde = Fc0 * Harray[q].transpose();
133 M(0, q) = Htilde.col(0).dot(g0);
134 M(1, q) = Htilde.col(1).dot(g1);
135 if constexpr (myDim == 2)
136 M(2, q) = Htilde.col(1).dot(g0) + Htilde.col(0).dot(g1);
137 else {
138 const auto g2 = F.row(2);
139 M(2, q) = Htilde.col(2).dot(g2);
140 M(3, q) = Htilde.col(2).dot(g1) + Htilde.col(1).dot(g2);
141 M(4, q) = Htilde.col(2).dot(g0) + Htilde.col(0).dot(g2);
142 M(5, q) = Htilde.col(1).dot(g0) + Htilde.col(0).dot(g1);
143 }
144 }
145 return M.eval();
146 } else
147 static_assert(Dune::AlwaysFalse<GEO>::value,
148 "firstDerivative can only be called with wrtCoeff as 0 and 1 indicating first derivative of the "
149 "Green-Lagrange strain w.r.t d and "
150 "alpha, respectively.");
151 }
152
177 template <int wrtCoeff, typename GEO, typename ST, typename EAST>
178 static auto secondDerivative(const GEO& geo, const auto& uFunction, const auto& localBasis, const auto& gpIndex,
180 const Eigen::Vector<ST, GEO::mydimension*(GEO::mydimension + 1) / 2>& S,
181 const EAST& easFunction, const auto& alpha, const int I = sNaN, const int J = sNaN) {
182 constexpr int myDim = GEO::mydimension;
183 constexpr int enhancedStrainSize = EAST::enhancedStrainSize;
184 using namespace Dune::DerivativeDirections;
185 using namespace Dune;
186 using MatrixType = Eigen::Matrix<ST, myDim, myDim>;
187 const auto centerPos = centerPosition(geo);
188 static_assert(myDim == 2 or myDim == 3,
189 "An enhancement of displacement gradient (transposed) can only be performed for the 2D or 3D case.");
190 if constexpr (wrtCoeff == 0) { // E,dd
191 const typename EAST::HType Harray = easFunction(gpPos);
192 const auto gradUdI = uFunction.evaluateDerivative(gpPos, wrt(spatialAll, coeff(I)), on(gridElement));
193 const auto gradUdI0 = uFunction.evaluateDerivative(centerPos, wrt(spatialAll, coeff(I)), on(gridElement));
194 const auto gradUdJ = uFunction.evaluateDerivative(gpPos, wrt(spatialAll, coeff(J)), on(gridElement));
195 const auto gradUdJ0 = uFunction.evaluateDerivative(centerPos, wrt(spatialAll, coeff(J)), on(gridElement));
196
197 Eigen::Vector<ST, myDim> dNI, dNI0;
198 Eigen::Vector<ST, myDim> dNJ, dNJ0;
199 for (const auto i : Dune::range(myDim)) {
200 dNI[i] = getDiagonalEntry(gradUdI[i], 0);
201 dNI0[i] = getDiagonalEntry(gradUdI0[i], 0);
202 dNJ[i] = getDiagonalEntry(gradUdJ[i], 0);
203 dNJ0[i] = getDiagonalEntry(gradUdJ0[i], 0);
204 }
205
206 Eigen::Vector<ST, myDim> dNItilde = Eigen::Vector<ST, myDim>::Zero();
207 Eigen::Vector<ST, myDim> dNJtilde = Eigen::Vector<ST, myDim>::Zero();
208
209 for (const auto t : Dune::range(enhancedStrainSize)) {
210 dNItilde += Harray[t] * (alpha[t] * dNI0);
211 dNJtilde += Harray[t] * (alpha[t] * dNJ0);
212 }
213
214 dNI += dNItilde;
215 dNJ += dNJtilde;
216 ST val{0.0};
217 if constexpr (myDim == 2)
218 val = S[0] * dNI[0] * dNJ[0] + S[1] * dNI[1] * dNJ[1] + S[2] * (dNI[0] * dNJ[1] + dNI[1] * dNJ[0]);
219 else
220 val = S[0] * dNI[0] * dNJ[0] + S[1] * dNI[1] * dNJ[1] + S[2] * dNI[2] * dNJ[2] +
221 S[3] * (dNI[2] * dNJ[1] + dNI[1] * dNJ[2]) + S[4] * (dNI[0] * dNJ[2] + dNI[2] * dNJ[0]) +
222 S[5] * (dNI[0] * dNJ[1] + dNI[1] * dNJ[0]);
223
224 const MatrixType kg = createScaledIdentityMatrix<ST, myDim, myDim>(val);
225 return kg;
226 } else if constexpr (wrtCoeff == 1) { // E,aa
227 constexpr int enhancedStrainSize = EAST::enhancedStrainSize;
228 const typename EAST::HType Harray = easFunction(gpPos);
229 auto kg = Eigen::Matrix<ST, enhancedStrainSize, enhancedStrainSize>::Zero().eval();
230 const MatrixType Fc0 = MatrixType::Identity() + compatibleDisplacementGradient<GEO>(uFunction, centerPos);
231
232 for (const auto i : Dune::range(myDim)) {
233 for (const auto j : Dune::range(myDim)) {
234 const auto sij = 0.5 * S[toVoigt<myDim>(i, j)];
235 for (const auto p : Dune::range(enhancedStrainSize)) {
236 const auto Hp = Fc0 * Harray[p].transpose();
237 for (const auto q : Dune::range(enhancedStrainSize)) {
238 const auto Hq = Fc0 * Harray[q].transpose();
239 kg(p, q) += sij * (Hp.col(i).transpose() * Hq.col(j) + Hp.col(j).transpose() * Hq.col(i)).sum();
240 }
241 }
242 }
243 }
244 return kg;
245 } else if constexpr (wrtCoeff == 2) { // E,ad
246 constexpr int enhancedStrainSize = EAST::enhancedStrainSize;
247 const typename EAST::HType Harray = easFunction(gpPos);
248 auto kg = Eigen::Matrix<ST, enhancedStrainSize, myDim>::Zero().eval();
249 const auto gradUdI = uFunction.evaluateDerivative(gpIndex, wrt(spatialAll, coeff(I)), on(gridElement));
250 const auto gradUdI0 = uFunction.evaluateDerivative(centerPos, wrt(spatialAll, coeff(I)), on(gridElement));
251 const MatrixType Fc0 = MatrixType::Identity() + compatibleDisplacementGradient<GEO>(uFunction, centerPos);
252 const MatrixType F = computeDeformationGradient(geo, uFunction, gpPos, easFunction, alpha);
253
254 Eigen::Vector<ST, myDim> dN0;
255 for (const auto i : Dune::range(myDim))
256 dN0[i] = getDiagonalEntry(gradUdI0[i], 0);
257
258 Eigen::Vector<ST, myDim> dNtilde = Eigen::Vector<ST, myDim>::Zero();
259 for (const auto t : Dune::range(enhancedStrainSize))
260 dNtilde += Harray[t] * (alpha[t] * dN0);
261
262 std::array<MatrixType, myDim> dNIdT, dNIdT0;
263 for (const auto i : Dune::range(myDim)) {
264 dNIdT[i].setZero();
265 dNIdT0[i].setZero();
266 for (const auto j : Dune::range(myDim)) {
267 dNIdT[i](i, j) = getDiagonalEntry(gradUdI[j], 0) + dNtilde[j];
268 dNIdT0[i](i, j) = getDiagonalEntry(gradUdI0[j], 0);
269 }
270 }
271
272 std::array<std::array<MatrixType, enhancedStrainSize>, myDim> dNXHtilde;
273 for (auto& row : dNXHtilde)
274 std::ranges::fill(row, MatrixType::Zero());
275 for (const auto p : Dune::range(enhancedStrainSize)) {
276 const auto Htilde = Harray[p].transpose();
277 for (const auto q : Dune::range(myDim))
278 dNXHtilde[q][p] += dNIdT0[q] * Htilde;
279 }
280
281 for (const auto i : Dune::range(myDim)) {
282 for (const auto j : Dune::range(myDim)) {
283 const auto sij = 0.5 * S[toVoigt<myDim>(i, j)];
284 for (const auto p : Dune::range(enhancedStrainSize)) {
285 const auto Hp = Fc0 * Harray[p].transpose();
286 for (const auto q : Dune::range(myDim)) {
287 kg(p, q) +=
288 sij * (Hp.col(i).transpose() * dNIdT[q].col(j) + Hp.col(j).transpose() * dNIdT[q].col(i) +
289 dNXHtilde[q][p].col(i).transpose() * F.col(j) + dNXHtilde[q][p].col(j).transpose() * F.col(i))
290 .sum();
291 }
292 }
293 }
294 }
295 return kg;
296 } else
297 static_assert(
298 Dune::AlwaysFalse<GEO>::value,
299 "secondDerivative can only be called with wrtCoeff as 0, 1 and 2 indicating second derivative of the "
300 "Green-Lagrange strain w.r.t d and "
301 "alpha and the mixed derivative, respectively.");
302 }
303
305 static constexpr auto name() { return std::string("Displacement Gradient (Transposed)"); }
306
307private:
308 static constexpr int sNaN = std::numeric_limits<int>::signaling_NaN();
309
310 template <typename GEO>
311 static Dune::FieldVector<double, GEO::mydimension> centerPosition(const GEO& geo) {
312 const auto& referenceElement = Dune::ReferenceElements<double, GEO::mydimension>::general(geo.type());
313 const auto centerPos = referenceElement.position(0, 0);
314 return centerPos;
315 }
316
317 template <typename GEO>
318 static auto compatibleDisplacementGradient(const auto& uFunction,
320 using namespace Dune::DerivativeDirections;
321 using namespace Dune;
322 return toEigen(uFunction.evaluateDerivative(gpPos, wrt(spatialAll), on(gridElement))).eval();
323 }
324
325 template <typename GEO, typename EAST>
326 static auto enhancedDisplacementGradient(const GEO& geo, const auto& uFunction,
328 const EAST& easFunction, const auto& alpha) {
329 using ST = typename std::remove_cvref_t<decltype(uFunction)>::ctype;
330 constexpr int myDim = GEO::mydimension;
331 using MatrixType = Eigen::Matrix<ST, myDim, myDim>;
332 const auto centerPos = centerPosition(geo);
333 const MatrixType Hc0 = compatibleDisplacementGradient<GEO>(uFunction, centerPos);
334 const MatrixType Fc0 = (MatrixType::Identity() + Hc0).eval();
335 const typename EAST::HType Harray = easFunction(gpPos);
336 constexpr int enhancedStrainSize = EAST::enhancedStrainSize;
337 typename EAST::AnsatzType Htilde;
338 Htilde.setZero(); // zeros returned if Harray is empty
339 for (const auto p : Dune::range(enhancedStrainSize))
340 Htilde += Harray[p] * alpha[p];
341 const MatrixType Henhanced = (Fc0 * Htilde.transpose()).eval();
342 return Henhanced;
343 }
344
345 template <typename GEO, typename EAST>
346 static auto computeDisplacementGradient(const GEO& geo, const auto& uFunction,
348 const EAST& easFunction, const auto& alpha) {
349 using ST = typename std::remove_cvref_t<decltype(uFunction)>::ctype;
350 constexpr int myDim = GEO::mydimension;
351 using MatrixType = Eigen::Matrix<ST, myDim, myDim>;
352 const MatrixType Hc = compatibleDisplacementGradient<GEO>(uFunction, gpPos);
353 const MatrixType Htilde = enhancedDisplacementGradient(geo, uFunction, gpPos, easFunction, alpha);
354 const MatrixType H = Hc + Htilde;
355 return H;
356 }
357
358 template <typename GEO, typename EAST>
359 static auto computeDeformationGradient(const GEO& geo, const auto& uFunction,
361 const EAST& easFunction, const auto& alpha) {
362 using ST = typename std::remove_cvref_t<decltype(uFunction)>::ctype;
363 constexpr int myDim = GEO::mydimension;
364 using MatrixType = Eigen::Matrix<ST, myDim, myDim>;
365 const MatrixType H = computeDisplacementGradient(geo, uFunction, gpPos, easFunction, alpha);
366 const MatrixType F = (MatrixType::Identity() + H).eval();
367 return F;
368 }
369};
370
371} // namespace Ikarus::EAS
Helper for the Eigen::Tensor types.
constexpr Eigen::Index toVoigt(Eigen::Index i, Eigen::Index j) noexcept
Converts 2D indices to Voigt notation index.
Definition: tensorutils.hh:182
Definition: easfunctions/displacementgradient.hh:21
Definition: utils/dirichletvalues.hh:30
A struct computing the value, first and second derivatives of the Green-Lagrange strain tensor (in Vo...
Definition: displacementgradienttransposed.hh:31
static auto firstDerivative(const GEO &geo, const auto &uFunction, const auto &localBasis, const auto &gpIndex, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const EAST &easFunction, const auto &alpha, const int node=sNaN)
Compute the first derivative of the Green-Lagrange strain w.r.t d or alpha for a given node and integ...
Definition: displacementgradienttransposed.hh:77
static auto secondDerivative(const GEO &geo, const auto &uFunction, const auto &localBasis, const auto &gpIndex, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const Eigen::Vector< ST, GEO::mydimension *(GEO::mydimension+1)/2 > &S, const EAST &easFunction, const auto &alpha, const int I=sNaN, const int J=sNaN)
Compute the second derivative of the Green-Lagrange strain w.r.t d or alpha for a given node and inte...
Definition: displacementgradienttransposed.hh:178
static auto value(const GEO &geo, const auto &uFunction, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const EAST &easFunction, const auto &alpha)
Compute the strain vector at a given integration point or its index.
Definition: displacementgradienttransposed.hh:47
static constexpr auto name()
The name of the strain measure enhanced w.r.t EAS method.
Definition: displacementgradienttransposed.hh:305
Definition: utils/dirichletvalues.hh:32