version 0.4.1
Ikarus::PS::PK2Stress Struct Reference

#include <ikarus/finiteelements/mechanics/assumedstress/asfunctions/pk2stress.hh>

Static Public Member Functions

template<typename GEO , typename AST >
static auto value (const GEO &geo, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const AST &asFunction, const auto &beta)
 Compute the stress vector at a given integration point or its index. More...
 
template<typename GEO , typename AST >
static auto firstDerivative (const GEO &geo, const auto &uFunction, const auto &localBasis, const auto &gpIndex, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const AST &asFunction, const auto &beta, const int node=sNaN)
 Compute the first derivative of the PK2 stress w.r.t beta for a given node and integration point. More...
 
template<typename GEO , typename ST , typename AST >
static auto secondDerivative (const GEO &geo, const auto &uFunction, const auto &localBasis, const auto &gpIndex, const Dune::FieldVector< double, GEO::mydimension > &gpPos, const Eigen::Vector< ST, GEO::mydimension *(GEO::mydimension+1)/2 > &S, const AST &asFunction, const auto &beta, const int I=sNaN, const int J=sNaN)
 Compute the second derivative of the PK2 stress w.r.t beta for a given node and integration point. More...
 
static constexpr auto name ()
 The name of the assumed stress type. More...
 

Member Function Documentation

◆ firstDerivative()

template<typename GEO , typename AST >
static auto Ikarus::PS::PK2Stress::firstDerivative ( const GEO &  geo,
const auto &  uFunction,
const auto &  localBasis,
const auto &  gpIndex,
const Dune::FieldVector< double, GEO::mydimension > &  gpPos,
const AST &  asFunction,
const auto &  beta,
const int  node = sNaN 
)
inlinestatic
Parameters
geoThe geometry object of the finite element.
uFunctionThe function representing the displacement field.
localBasisThe local basis object.
gpPosThe position of the integration point.
gpIndexThe index of the integration point.
nodeThe FE node index (defaults to sNaN).
asFunctionThe AssumedStress function.
betaThe coefficients of the PS function.
Template Parameters
GEOThe type of the geometry object.
ASTThe type of the Assumed Stress function function.
Returns
The first derivative of the PK2 stress w.r.t beta.

◆ name()

static constexpr auto Ikarus::PS::PK2Stress::name ( )
inlinestaticconstexpr

◆ secondDerivative()

template<typename GEO , typename ST , typename AST >
static auto Ikarus::PS::PK2Stress::secondDerivative ( const GEO &  geo,
const auto &  uFunction,
const auto &  localBasis,
const auto &  gpIndex,
const Dune::FieldVector< double, GEO::mydimension > &  gpPos,
const Eigen::Vector< ST, GEO::mydimension *(GEO::mydimension+1)/2 > &  S,
const AST &  asFunction,
const auto &  beta,
const int  I = sNaN,
const int  J = sNaN 
)
inlinestatic
Parameters
geoThe geometry object of the finite element.
uFunctionThe function representing the displacement field.
localBasisThe local basis object.
gpPosThe position of the integration point.
gpIndexThe index of the integration point.
IThe FE node index I (defaults to sNaN).
JThe FE node index J (defaults to sNaN).
SThe PK2 stress (in Voigt notation).
asFunctionThe AssumedStress function.
betaThe coefficients of the PS function.
Template Parameters
GEOThe type of the geometry object.
STThe underlying scalar type.
ASTThe type of the Assumed Stress function.
Returns
The second derivative of the PK2 stress w.r.t beta

◆ value()

template<typename GEO , typename AST >
static auto Ikarus::PS::PK2Stress::value ( const GEO &  geo,
const Dune::FieldVector< double, GEO::mydimension > &  gpPos,
const AST &  asFunction,
const auto &  beta 
)
inlinestatic
Parameters
geoThe geometry object providing the transposed Jacobian.
gpPosThe position of the integration point.
asFunctionThe AssumedStress function.
betaThe coefficients of the PS function.
Template Parameters
GEOThe type of the geometry object.
ASTThe type of the Assumed Stress function
Returns
The PK2 stress vector at the given integration point.

The documentation for this struct was generated from the following file: