version 0.4.2
Ikarus::Materials::NeoHookeT< ST > Struct Template Reference

Implementation of the Neo-Hookean material model.The energy is computed as. More...

#include <ikarus/finiteelements/mechanics/materials/hyperelastic/neohooke.hh>

Inheritance diagram for Ikarus::Materials::NeoHookeT< ST >:
[legend]

Public Types

using ScalarType = ST
 
using StrainMatrix = Eigen::Matrix< ScalarType, dim, dim >
 
using StressMatrix = StrainMatrix
 
using MaterialTensor = Eigen::TensorFixedSize< ScalarType, Eigen::Sizes< dim, dim, dim, dim > >
 
using MaterialParameters = LamesFirstParameterAndShearModulus
 
using MaterialImpl = NeoHookeT< ST >
 Type of material implementation. More...
 

Public Member Functions

 NeoHookeT (const MaterialParameters &mpt)
 Constructor for NeoHookeT. More...
 
MaterialParameters materialParametersImpl () const
 Returns the material parameters stored in the material. More...
 
template<typename Derived >
ScalarType storedEnergyImpl (const Eigen::MatrixBase< Derived > &C) const
 Computes the stored energy in the Neo-Hookean material model. More...
 
template<bool voigt, typename Derived >
StressMatrix stressesImpl (const Eigen::MatrixBase< Derived > &C) const
 Computes the stresses in the Neo-Hookean material model. More...
 
template<bool voigt, typename Derived >
MaterialTensor tangentModuliImpl (const Eigen::MatrixBase< Derived > &C) const
 Computes the tangent moduli in the Neo-Hookean material model. More...
 
template<typename STO >
auto rebind () const
 Rebinds the material to a different scalar type. More...
 
template<typename Derived >
auto materialInversionImpl (const Eigen::MatrixBase< Derived > &Sraw) const
 Computes the strain measure and inverse material tangent for a given stress state. More...
 
constexpr const MaterialImplimpl () const
 Const accessor to the underlying material (CRTP). More...
 
constexpr MaterialImplimpl ()
 Accessor to the underlying material (CRTP). More...
 
auto materialParameters () const
 Returns the material parameters stored in the implemented material. More...
 
auto storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const
 Return the stored potential energy of the material. More...
 
auto stresses (const Eigen::MatrixBase< Derived > &Eraw) const
 Get the stresses of the material. More...
 
auto tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const
 Get the tangentModuli of the material. More...
 
auto materialInversion (const Eigen::MatrixBase< Derived > &Sraw, const Eigen::MatrixBase< Derived > &EstartRaw=Derived::Zero().eval(), const double tol=1e-12, const int maxIter=20) const
 Computes the corresponding strain measure and inverse material tangent for a given stress state. More...
 

Static Public Member Functions

static constexpr std::string nameImpl () noexcept
 
static constexpr std::string name ()
 Get the name of the implemented material. More...
 

Static Public Attributes

static constexpr int dim = 3
 
static constexpr auto strainTag = StrainTags::rightCauchyGreenTensor
 
static constexpr auto stressTag = StressTags::PK2
 
static constexpr auto tangentModuliTag = TangentModuliTags::Material
 
static constexpr bool energyAcceptsVoigt = false
 
static constexpr bool stressToVoigt = false
 
static constexpr bool stressAcceptsVoigt = false
 
static constexpr bool moduliToVoigt = false
 
static constexpr bool moduliAcceptsVoigt = false
 
static constexpr double derivativeFactorImpl = 2
 
static constexpr bool isReduced
 Static constant for determining if the material has vanishing stress or strain components (is reduced). More...
 
static constexpr bool isLinear
 
static constexpr double derivativeFactor
 This factor denotes the differences between the returned stresses and moduli and the passed strain. More...
 

Detailed Description

template<typename ST>
struct Ikarus::Materials::NeoHookeT< ST >

\[ \psi(\BC) = \frac{\mu}{2} (\tr \BC-3- 2 \log \sqrt{\det \BC}) + \frac{\la}{2} (\log \sqrt{\det \BC})^2 ,\]

where \( \BC \) denotes the right Cauchy-Green strain tensor.

The second Piola-Kirchhoff stresses are computed as

\[ \BS(\BC) =\fracpt{\psi(\BC)}{\BC} = \mu (\BI-\BC^{-1}) + \la \log \sqrt{\det \BC} \BC^{-1},\]

and the material tangent moduli are computed as

\[ \BBC(\BC) =\fracpt{^2\psi(\BC)}{\BC^2} = \la \BC^{-1} \otimes \BC^{-1} + 2 (\mu- \la \log \sqrt{\det \BC} ) \CI,\]

where \( \CI_{IJKL} = \frac{1}{2}({(\BC^{-1})}^{IK}{(\BC^{-1})}^{JL}+{(\BC^{-1})}^{IL} {(\BC^{-1})}^{JK}).\)

Remarks
See [4], Section 6.4.3 for a discussion of this material
Template Parameters
STThe underlying scalar type.

Member Typedef Documentation

◆ MaterialImpl

using Ikarus::Materials::Material< NeoHookeT< ST > >::MaterialImpl = NeoHookeT< ST >
inherited

◆ MaterialParameters

template<typename ST >
using Ikarus::Materials::NeoHookeT< ST >::MaterialParameters = LamesFirstParameterAndShearModulus

◆ MaterialTensor

template<typename ST >
using Ikarus::Materials::NeoHookeT< ST >::MaterialTensor = Eigen::TensorFixedSize<ScalarType, Eigen::Sizes<dim, dim, dim, dim> >

◆ ScalarType

template<typename ST >
using Ikarus::Materials::NeoHookeT< ST >::ScalarType = ST

◆ StrainMatrix

template<typename ST >
using Ikarus::Materials::NeoHookeT< ST >::StrainMatrix = Eigen::Matrix<ScalarType, dim, dim>

◆ StressMatrix

template<typename ST >
using Ikarus::Materials::NeoHookeT< ST >::StressMatrix = StrainMatrix

Constructor & Destructor Documentation

◆ NeoHookeT()

template<typename ST >
Ikarus::Materials::NeoHookeT< ST >::NeoHookeT ( const MaterialParameters mpt)
inlineexplicit
Parameters
mptThe Lame's parameters (first parameter and shear modulus).

Member Function Documentation

◆ impl() [1/2]

constexpr MaterialImpl & Ikarus::Materials::Material< NeoHookeT< ST > >::impl ( )
inlineconstexprinherited
Returns
Reference to the underlying material.

◆ impl() [2/2]

constexpr const MaterialImpl & Ikarus::Materials::Material< NeoHookeT< ST > >::impl ( ) const
inlineconstexprinherited
Returns
Const reference to the underlying material.

◆ materialInversion()

auto Ikarus::Materials::Material< NeoHookeT< ST > >::materialInversion ( const Eigen::MatrixBase< Derived > &  Sraw,
const Eigen::MatrixBase< Derived > &  EstartRaw = Derived::Zero().eval(),
const double  tol = 1e-12,
const int  maxIter = 20 
) const
inlineinherited

This assumes the existence of a complementary stored energy function $\chi(\BS)$, such that $$ \partial_{\BS} \chi(\BS) := \BE$$. Except for linear materials, this is not just the inverse of the material tangent, but needs the inversion of the materials stored energy function. For SVK and Linear Elasticity, the inverse of $\BC$ is taken. For NeoHooke an analytical solution exists, and for the general hyperelastic framework (and for all materials that don't implement the material inversion, for that a strain energy function exists) a numerical approach is used.

Template Parameters
tagStrain tag indicating which strain tensor components are expected as result.
voigtBoolean indicating whether to return Voigt-shaped result.
useNumericforces the function to use the generic numerical approach
Derivedthe type of the stress matrix
Parameters
Srawinput stress matrix
EstartRawoptionally define a starting value for the numerical algorithm (applies only to numerical inversion)
toltolerance for the Newton-Raphson solver (applies only to numerical inversion).
maxItermaximum number of iterations for the Newton-Raphson solver (applies only to numerical inversion).
Returns
pair of inverse material tangent and strain tensor

◆ materialInversionImpl()

template<typename ST >
template<typename Derived >
auto Ikarus::Materials::NeoHookeT< ST >::materialInversionImpl ( const Eigen::MatrixBase< Derived > &  Sraw) const
inline

Analytical solution is taken from R. Pfefferkorn, S. Bieber, B. Oesterle, M. Bischoff, and P. Betsch, “Improving efficiency and robustness of enhanced assumed strain elements for nonlinear problems,” Numerical Meth Engineering, vol. 122, no. 8, pp. 1911–1939, Apr. 2021, doi: 10.1002/nme.6605.

Template Parameters
DerivedThe derived type of the input matrix.
Parameters
Srawthe input stress matrix.
Returns
pair of inverse material tangent and right Cauchy-Green strain tensor in voigt notation.

◆ materialParameters()

auto Ikarus::Materials::Material< NeoHookeT< ST > >::materialParameters ( ) const
inlineinherited
Returns
Material parameter.

◆ materialParametersImpl()

template<typename ST >
MaterialParameters Ikarus::Materials::NeoHookeT< ST >::materialParametersImpl ( ) const
inline

◆ name()

static constexpr std::string Ikarus::Materials::Material< NeoHookeT< ST > >::name ( )
inlinestaticconstexprinherited
Returns
Name of the material.

◆ nameImpl()

template<typename ST >
static constexpr std::string Ikarus::Materials::NeoHookeT< ST >::nameImpl ( )
inlinestaticconstexprnoexcept

◆ rebind()

template<typename ST >
template<typename STO >
auto Ikarus::Materials::NeoHookeT< ST >::rebind ( ) const
inline
Template Parameters
STOThe target scalar type.
Returns
NeoHookeT<ScalarTypeOther> The rebound NeoHooke material.

◆ storedEnergy()

auto Ikarus::Materials::Material< NeoHookeT< ST > >::storedEnergy ( const Eigen::MatrixBase< Derived > &  Eraw) const
inlineinherited

This function return the free Helmholtz energy of the material

Template Parameters
tagStrain tag indicating which strain tensor components are passed.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Scalar return of stored energy.

◆ storedEnergyImpl()

template<typename ST >
template<typename Derived >
ScalarType Ikarus::Materials::NeoHookeT< ST >::storedEnergyImpl ( const Eigen::MatrixBase< Derived > &  C) const
inline
Template Parameters
DerivedThe derived type of the input matrix.
Parameters
CThe right Cauchy-Green tensor.
Returns
ScalarType The stored energy.

◆ stresses()

auto Ikarus::Materials::Material< NeoHookeT< ST > >::stresses ( const Eigen::MatrixBase< Derived > &  Eraw) const
inlineinherited
Template Parameters
tagStrain tag indicating which strain tensor components are passed.
voigtBoolean indicating whether to return Voigt-shaped result.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Vectorial or Matrix return of stresses.

◆ stressesImpl()

template<typename ST >
template<bool voigt, typename Derived >
StressMatrix Ikarus::Materials::NeoHookeT< ST >::stressesImpl ( const Eigen::MatrixBase< Derived > &  C) const
inline
Template Parameters
voigtA boolean indicating whether to return stresses in Voigt notation.
DerivedThe derived type of the input matrix.
Parameters
CThe right Cauchy-Green tensor.
Returns
StressMatrix The stresses.

◆ tangentModuli()

auto Ikarus::Materials::Material< NeoHookeT< ST > >::tangentModuli ( const Eigen::MatrixBase< Derived > &  Eraw) const
inlineinherited
Template Parameters
tagStrain tag indicating which strain tensor components are passed.
voigtBoolean indicating whether to return Voigt-shaped result.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Tangent moduli in Voigt notation or as fourth-order tensor.

◆ tangentModuliImpl()

template<typename ST >
template<bool voigt, typename Derived >
MaterialTensor Ikarus::Materials::NeoHookeT< ST >::tangentModuliImpl ( const Eigen::MatrixBase< Derived > &  C) const
inline
Template Parameters
voigtA boolean indicating whether to return tangent moduli in Voigt notation.
DerivedThe derived type of the input matrix.
Parameters
CThe right Cauchy-Green tensor.
Returns
MaterialTensor The tangent moduli.

Member Data Documentation

◆ derivativeFactor

constexpr double Ikarus::Materials::Material< NeoHookeT< ST > >::derivativeFactor
staticconstexprinherited

For neoHooke the inserted quantity is $C$ the Green-Lagrangian strain tensor, the function relation between the energy and the stresses is $S = 1 \dfrac{\partial\psi(E)}{\partial E}$. This factor is the pre factor, which is the difference to the actual derivative, which is written here

◆ derivativeFactorImpl

template<typename ST >
constexpr double Ikarus::Materials::NeoHookeT< ST >::derivativeFactorImpl = 2
staticconstexpr

◆ dim

template<typename ST >
constexpr int Ikarus::Materials::NeoHookeT< ST >::dim = 3
staticconstexpr

◆ energyAcceptsVoigt

template<typename ST >
constexpr bool Ikarus::Materials::NeoHookeT< ST >::energyAcceptsVoigt = false
staticconstexpr

◆ isLinear

constexpr bool Ikarus::Materials::Material< NeoHookeT< ST > >::isLinear
staticconstexprinherited

◆ isReduced

constexpr bool Ikarus::Materials::Material< NeoHookeT< ST > >::isReduced
staticconstexprinherited

◆ moduliAcceptsVoigt

template<typename ST >
constexpr bool Ikarus::Materials::NeoHookeT< ST >::moduliAcceptsVoigt = false
staticconstexpr

◆ moduliToVoigt

template<typename ST >
constexpr bool Ikarus::Materials::NeoHookeT< ST >::moduliToVoigt = false
staticconstexpr

◆ strainTag

template<typename ST >
constexpr auto Ikarus::Materials::NeoHookeT< ST >::strainTag = StrainTags::rightCauchyGreenTensor
staticconstexpr

◆ stressAcceptsVoigt

template<typename ST >
constexpr bool Ikarus::Materials::NeoHookeT< ST >::stressAcceptsVoigt = false
staticconstexpr

◆ stressTag

template<typename ST >
constexpr auto Ikarus::Materials::NeoHookeT< ST >::stressTag = StressTags::PK2
staticconstexpr

◆ stressToVoigt

template<typename ST >
constexpr bool Ikarus::Materials::NeoHookeT< ST >::stressToVoigt = false
staticconstexpr

◆ tangentModuliTag

template<typename ST >
constexpr auto Ikarus::Materials::NeoHookeT< ST >::tangentModuliTag = TangentModuliTags::Material
staticconstexpr

The documentation for this struct was generated from the following file: