Iterative solver for solving linear systems using the truncated conjugate gradient method. More...
#include <ikarus/linearalgebra/truncatedconjugategradient.hh>
Public Types | |
| enum | { UpLo = upLo } |
| typedef IterativeSolverBase< TruncatedConjugateGradient > | Base |
| using | MatrixType = M |
| using | Scalar = typename MatrixType::Scalar |
| using | RealScalar = typename MatrixType::RealScalar |
| using | Preconditioner = PC |
Public Member Functions | |
| TruncatedConjugateGradient (TruncatedConjugateGradient &&other) noexcept | |
| TCGInfo< typename MatrixType::RealScalar > | getInfo () |
| Get information about the truncated conjugate gradient algorithm. More... | |
| void | setInfo (TCGInfo< typename MatrixType::RealScalar > alginfo) |
| Set information about the truncated conjugate gradient algorithm. More... | |
| TruncatedConjugateGradient () | |
| template<typename MatrixDerived > | |
| TruncatedConjugateGradient (const EigenBase< MatrixDerived > &A) | |
| ~TruncatedConjugateGradient () | |
| template<typename Rhs , typename Dest > | |
| void | _solve_vector_with_guess_impl (const Rhs &b, Dest &x) const |
| M | Type of the matrix A. |
| upLo | Type of the triangular part of the matrix (Lower or Upper or both). |
| PC | Type of the preconditioner. |
| typedef IterativeSolverBase<TruncatedConjugateGradient> Eigen::TruncatedConjugateGradient< M, upLo, PC >::Base |
| using Eigen::TruncatedConjugateGradient< M, upLo, PC >::MatrixType = M |
| using Eigen::TruncatedConjugateGradient< M, upLo, PC >::Preconditioner = PC |
| using Eigen::TruncatedConjugateGradient< M, upLo, PC >::RealScalar = typename MatrixType::RealScalar |
| using Eigen::TruncatedConjugateGradient< M, upLo, PC >::Scalar = typename MatrixType::Scalar |
|
inlinenoexcept |
|
inline |
Default constructor.
|
inlineexplicit |
Initialize the solver with matrix A for further Ax=b solving.
This constructor is a shortcut for the default constructor followed by a call to compute().
|
inline |
|
inline |
|
inline |
|
inline |
| _alginfo | Information about the algorithm. |