Plate subjected to a surface load¶
Description¶
Kirchhoff-type plate element is implemented in iks004_kirchhoffPlate.cpp
using the automatic differentiation
technique as commented before. The basis used for discretization is a NURBS basis from the dune-iga
module.
The problem is solved, and convergence plots are created by comparing the solutions to the available analytical solutions for the
simply supported case.
Code highlights¶
Similar to the struct
named Solid
in iks003_incompressible_LinearElasticity.cpp
, here a struct
named KirchhoffPlate
is created such that it inherits from AutoDiffFE
. It is constructed as shown below:
KirchhoffPlate(const Basis &basis, const typename LocalView::Element &element, double p_Emodul, double p_nu,
double p_thickness)
: BaseDisp(basis.flat(), element),
BaseAD(basis.flat(), element),
Emodul{p_Emodul},
nu{p_nu},
thickness{p_thickness} {
this->localView().bind(element);
geometry_.emplace(this->localView().element().geometry());
}
p_thickness
parameter in addition to the ones in Solid
. Here, the energy is calculated as:
energy += (0.5 * kappa.dot(D * kappa) - w * lambda) * geometry_->integrationElement(gp.position()) * gp.weight();
kappa
being the vector of curvature containing \(\kappa_{xx}, \kappa_{yy}\) and \(\kappa_{xy}\). If the boundaries
are clamped, the penalty method could be used, for example, to fix the derivatives of the displacements. Here, however, the example for the simply supported case is discussed further.
A two-dimensional NURBS grid is created from the dune-iga module.
constexpr int griddim = 2; // (1)!
constexpr int dimworld = 2; // (2)!
const std::array<std::vector<double>, griddim> knotSpans = { { {0, 0, 1, 1}, {0, 0, 1, 1} } }; // (3)!
using ControlPoint = Dune::IGA::NURBSPatchData<griddim, dimworld>::ControlPointType;
const double Lx = 1; // (4)!
const double Ly = 1; // (5)!
const std::vector<std::vector<ControlPoint>> controlPoints
= { { {.p = {0, 0}, .w = 1}, {.p = {0, Ly}, .w = 1} },
{ {.p = {Lx, 0}, .w = 1}, {.p = {Lx, Ly}, .w = 1} } }; // (6)!
std::array<int, griddim> dimsize = {2, 2}; // (7)!
auto controlNet = Dune::IGA::NURBSPatchData<griddim, dimworld>::ControlPointNetType(dimsize, controlPoints); // (8)!
using Grid = Dune::IGA::NURBSGrid<griddim, dimworld>;
Dune::IGA::NURBSPatchData<griddim, dimworld> patchData;
patchData.knotSpans = knotSpans; // (9)!
patchData.degree = {1, 1}; // (10)!
patchData.controlPoints = controlNet; // (11)!
patchData = Dune::IGA::degreeElevate(patchData, 0, 1); // (12)!
patchData = Dune::IGA::degreeElevate(patchData, 1, 1); // (13)!
Grid grid(patchData); // (14)!
- The dimension of the grid. Here, two-dimensional.
- The dimension of the physical space in which the grid lies (the embedding space of the grid). Here, two-dimensional.
- The knot vector for the NURBS grid.
- Length of the plate
- Width of the plate
- Control points and the weights for the square plate (the control points are ordered such that all the control points for a particular \(x\)-position are listed first, followed by the subsequent \(x\)-positions in ascending order).
- Number of control points in either direction.
- Creation of the control net.
- Binding the
knotSpans
to a particular NURBSpatchData
. - The polynomial degree for the basis in either directions. It can also be calculated from the
knotSpans
. - Binding the
controlNet
to a particular NURBSpatchData
. - Elevating the polynomial degree for the
patchData
in \(x\)-direction (0
) by 1. - Elevating the polynomial degree for the
patchData
in \(y\)-direction (1
) by 1. - Creating the grid object from the patch data
In order to obtain the convergence plots, the system is solved five times, with the refinement level
increasing by 1 each time using the command grid.globalRefine(1);
. The NURBS basis can be obtained directly from the
NURBS grid using the getPreBasis()
function, as shown below:
auto wAna = [&](auto x) {
double w = 0.0;
const int seriesFactors = 40;
const double pi = std::numbers::pi;
auto oddFactors
= std::ranges::iota_view(1, seriesFactors) | std::views::filter([](auto i) { return i % 2 != 0; });
for (auto m : oddFactors)
for (auto n : oddFactors)
w += sin(m * pi * x[0] / Lx) * sin(n * pi * x[1] / Ly)
/ (m * n * Dune::power(m * m / (Lx * Lx) + n * n / (Ly * Ly), 2));
return 16 * totalLoad / (Dune::power(pi, 6) * D) * w;
};
Dune::Functions::makeDiscreteGlobalBasisFunction
is used to create a function from the nodal finite element
solution of the displacements and the NURBS basis whereas the Dune::Functions::makeAnalyticGridViewFunction
is
used to create a function by using the function to evaluate the analytical solutions and the gridView
to get the position x
.
Local functions are then created that are used later to calculate the \(L^2\)-error.auto wGlobalFunction = Dune::Functions::makeDiscreteGlobalBasisFunction<Dune::FieldVector<double, 1>>(basis.flat(), w);
auto wGlobalAnalyticFunction = Dune::Functions::makeAnalyticGridViewFunction(wAna, gridView);
auto localw = localFunction(wGlobalFunction);
auto localwAna = localFunction(wGlobalAnalyticFunction);
double l2_error = 0.0;
for (auto &ele : elements(gridView)) {
localView.bind(ele);
localw.bind(ele);
localwAna.bind(ele);
const auto geo = localView.element().geometry();
const auto &rule = Dune::QuadratureRules<double, 2>::rule(ele.type(), 2 * localView.tree().finiteElement().localBasis().order());
for (auto gp : rule) {
const auto gpGlobalPos = geo.global(gp.position());
const auto w_ex = localwAna(gp.position());
const auto w_fe = localw(gp.position());
l2_error += Dune::power(w_ex - w_fe, 2) * ele.geometry().integrationElement(gp.position()) * gp.weight();
}
}
l2_error = std::sqrt(l2_error);
std::vector<double> dofsVec;
std::vector<double> l2Evcector;
dofsVec.push_back(basis.flat().size());
l2Evcector.push_back(l2_error);
Takeaways¶
- NURBS grids can be created using the
dune-iga
module. - The basis for the corresponding NURBS grid can be obtained using the
getPreBasis()
function. - The Kirchhoff plate element can be easily implemented by evaluating the energy and using automatic differentiation methods.
- \(L^2\)-error can be evaluated to perform convergence studies.