Local Basis¶
Each finite element includes a kind of local basis in terms of ansatz functions. These ansatz functions need to be evaluated in the parameter domain of the finite element.
Interface¶
In the exported module dune-localfefunctions
, we provide a thin wrapper with basic caching functionality for dune bases.
For the definitions of bases, refer Chapter 8.2.1 of the Dune book1.
Thus Dune::CachedLocalBasis
(#include <dune/cachedlocalBasis/cachedlocalBasis.hh>
) provides the following interface:
Dune::LocalBasis(const DuneLocalBasis& p_basis);// (1)!
void evaluateFunction(const DomainType& local, Eigen::VectorX<RangeFieldType>& N);
void evaluateJacobian(const DomainType& local,Eigen::Matrix<RangeFieldType, Eigen::Dynamic, gridDim>& dN);
void evaluateFunctionAndJacobian(const DomainType& local,Eigen::VectorX<RangeFieldType>& N,
Eigen::Matrix<RangeFieldType, Eigen::Dynamic, gridDim>& dN);
void evaluateSecondDerivatives(const DomainType& local, Eigen::Matrix<RangeFieldType, Eigen::Dynamic, gridDim*(gridDim + 1) / 2>& dN);
const Eigen::VectorX<RangeFieldType>& evaluateFunction(const unsigned int& integrationPointIndex);
const Eigen::Matrix<RangeFieldType, Eigen::Dynamic, gridDim>& evaluateJacobian(const unsigned int& integrationPointIndex);
const Eigen::Matrix<RangeFieldType, Eigen::Dynamic, gridDim*(gridDim + 1) / 2>& evaluateSecondDerivatives(const unsigned int& integrationPointIndex);
auto viewOverIntegrationPoints();// (2)!
auto viewOverFunctionAndJacobian();// (3)!
template <typename IntegrationRule, typename... Ints>
void bind(IntegrationRule&& p_rule, Derivatives<Ints...>&& ints);
bool isBound(int i) const;// (4)!
const Dune::QuadraturePoint<DomainFieldType, gridDim>& indexToIntegrationPoint(int i) const;// (5)!
- The constructor only accepts a local basis that satisfies the concept
Concepts::DuneLocalBasis
. In keeping with the spirit of duck-typing, this also allows for the use of a local basis from the Dune module. - This returns a vector of structs containing the integration point and its index. Therefore, the syntax is usually
for (const auto& [gpIndex, gp] : localFunction.viewOverIntegrationPoints()) {...}
- Returns a view over the ansatz functions and the ansatz function Jacobians at the integration points
- Checks if the i-th derivatives are bounded.
- Convert an integration point index to a full integration point.
The first two function calls, evaluateFunction
and evaluateJacobian
, can be used to calculate the function values
\( N(\boldsymbol{\xi}) \) and the spatial derivatives \( N_{,\boldsymbol{\xi}}(\boldsymbol{\xi}) \). One must allocate the objects and pass them as mutable references.
The same holds for evaluateSecondDerivatives
.
In contrast to this, there are three other methods that receive an integration point index.
These methods return a const
reference to the evaluated ansatz function values and their first and second derivatives.
This functionality is dependent on a previous call to bind(...)
. This binds the local basis to one quadrature rule and caches the passed bindDerivatives(..)
.
An error is thrown if evaluateFunction(const unsigned int& integrationPointIndex)
is called before binding.
Finally, to bind to an integration rule and cache the value and ansatz function Jacobian, one would use the following syntax:
- Alternative to the two lines above (Line 6 and 7)
-
Oliver Sander. DUNEāThe Distributed and Unified Numerics Environment. Volume 140. Springer Nature, 2020. doi:10.1007/978-3-030-59702-3. ↩