version 0.4.1
volumetricfunctions.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
10#pragma once
11
16
17namespace Ikarus::Materials {
18
25struct VF0
26{
27 template <typename ST>
28 ST storedEnergyImpl(const ST& /* J */) const {
29 return 0;
30 };
31
32 template <typename ST>
33 ST firstDerivativeImpl(const ST& /* J */) const {
34 return 0;
35 }
36
37 template <typename ST>
38 ST secondDerivativeImpl(const ST& /* J */) const {
39 return 0;
40 };
41
42 [[nodiscard]] constexpr static std::string name() noexcept { return "None"; }
43};
44
51struct VF1
52{
53 template <typename ST>
54 ST storedEnergyImpl(const ST& J) const {
55 return 0.5 * pow(J - 1, 2);
56 };
57
58 template <typename ST>
59 ST firstDerivativeImpl(const ST& J) const {
60 return J - 1;
61 }
62
63 template <typename ST>
64 ST secondDerivativeImpl(const ST& /* J */) const {
65 return 1;
66 };
67
68 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 1"; }
69};
70
77struct VF2
78{
79 template <typename ST>
80 ST storedEnergyImpl(const ST& J) const {
81 return 0.25 * (pow(J - 1, 2) + pow(log(J), 2));
82 };
83
84 template <typename ST>
85 ST firstDerivativeImpl(const ST& J) const {
86 return 0.5 * (J - 1 + 1 / J * log(J));
87 }
88
89 template <typename ST>
90 ST secondDerivativeImpl(const ST& J) const {
91 auto Jsq = pow(J, 2);
92 return 1 / (2 * Jsq) * (1 + Jsq - log(J));
93 }
94
95 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 2"; }
96};
97
104struct VF3
105{
106 template <typename ST>
107 ST storedEnergyImpl(const ST& J) const {
108 return 0.5 * pow(log(J), 2);
109 };
110
111 template <typename ST>
112 ST firstDerivativeImpl(const ST& J) const {
113 return 1 / J * log(J);
114 }
115
116 template <typename ST>
117 ST secondDerivativeImpl(const ST& J) const {
118 return 1 / pow(J, 2) * (1 - log(J));
119 }
120
121 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 3"; }
122};
123
130struct VF4
131{
132 template <typename ST>
133 ST storedEnergyImpl(const ST& J) const {
134 return (1 / pow(beta_, 2)) * ((1 / pow(J, beta_)) - 1 + beta_ * log(J));
135 };
136
137 template <typename ST>
138 ST firstDerivativeImpl(const ST& J) const {
139 return (1 / beta_) * ((1 / J) - (1 / (pow(J, 1 + beta_))));
140 }
141
142 template <typename ST>
143 ST secondDerivativeImpl(const ST& J) const {
144 return (1 / beta_) * ((1 / pow(J, 2 + beta_)) * (1 + beta_ - pow(J, beta_)));
145 }
146
147 explicit VF4(double beta)
148 : beta_(beta) {}
149
150 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 4"; }
151
152 double beta() const { return beta_; }
153
154private:
155 double beta_;
156};
157
164struct VF5
165{
166 template <typename ST>
167 ST storedEnergyImpl(const ST& J) const {
168 return 0.25 * (pow(J, 2) - 1 - 2 * log(J));
169 };
170
171 template <typename ST>
172 ST firstDerivativeImpl(const ST& J) const {
173 return 0.5 * (J - (1 / J));
174 }
175
176 template <typename ST>
177 ST secondDerivativeImpl(const ST& J) const {
178 return 0.5 * (1 + (1 / pow(J, 2)));
179 }
180
181 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 5"; }
182};
183
190struct VF6
191{
192 template <typename ST>
193 ST storedEnergyImpl(const ST& J) const {
194 return J - log(J) - 1;
195 };
196
197 template <typename ST>
198 ST firstDerivativeImpl(const ST& J) const {
199 return 1 - (1 / J);
200 }
201
202 template <typename ST>
203 ST secondDerivativeImpl(const ST& J) const {
204 return 1 / pow(J, 2);
205 }
206
207 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 6"; }
208};
209
216struct VF7
217{
218 template <typename ST>
219 ST storedEnergyImpl(const ST& J) const {
220 return pow(J, beta_) * (beta_ * log(J) - 1) + 1;
221 };
222
223 template <typename ST>
224 ST firstDerivativeImpl(const ST& J) const {
225 return pow(beta_, 2) * (1.0 / pow(J, 1.0 - beta_)) * log(J);
226 }
227
228 template <typename ST>
229 ST secondDerivativeImpl(const ST& J) const {
230 return pow(beta_, 2) * pow(J, beta_ - 2.0) * (1 + (beta_ - 1) * log(J));
231 }
232
233 explicit VF7(double beta)
234 : beta_(beta) {}
235
236 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 7"; }
237
238 double beta() const { return beta_; }
239
240private:
241 double beta_;
242};
243
250struct VF8
251{
252 template <typename ST>
253 ST storedEnergyImpl(const ST& J) const {
254 return J * log(J) - J + 1;
255 };
256
257 template <typename ST>
258 ST firstDerivativeImpl(const ST& J) const {
259 return log(J);
260 }
261
262 template <typename ST>
263 ST secondDerivativeImpl(const ST& J) const {
264 return 1 / J;
265 }
266
267 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 8"; }
268};
269
276struct VF9
277{
278 template <typename ST>
279 ST storedEnergyImpl(const ST& J) const {
280 return (1.0 / 32.0) * pow(pow(J, 2) - pow(J, -2), 2);
281 };
282
283 template <typename ST>
284 ST firstDerivativeImpl(const ST& J) const {
285 return (1.0 / 8.0) * (pow(J, 3) - (1.0 / pow(J, 5)));
286 }
287
288 template <typename ST>
289 ST secondDerivativeImpl(const ST& J) const {
290 return (1.0 / 8.0) * (5.0 * pow(J, -6) + (3.0 * pow(J, 2)));
291 }
292
293 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 9"; }
294};
295
303struct VF10
304{
305 template <typename ST>
306 ST storedEnergyImpl(const ST& J) const {
307 return (J / beta_) * (1 - (pow(J, -beta_) / (1 - beta_))) + (1.0 / (beta_ - 1));
308 };
309
310 template <typename ST>
311 ST firstDerivativeImpl(const ST& J) const {
312 return (1 / beta_) * (1 - pow(J, -beta_));
313 }
314
315 template <typename ST>
316 ST secondDerivativeImpl(const ST& J) const {
317 return pow(J, -1 - beta_);
318 }
319
320 explicit VF10(double beta)
321 : beta_(beta) {}
322
323 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 10"; }
324
325 double beta() const { return beta_; }
326
327private:
328 double beta_;
329};
330
337struct VF11
338{
339 template <typename ST>
340 ST storedEnergyImpl(const ST& J) const {
341 return (1.0 / 50.0) * (pow(J, 5.0) + pow(J, -5.0) - 2.0);
342 };
343
344 template <typename ST>
345 ST firstDerivativeImpl(const ST& J) const {
346 return (1.0 / 10.0) * (pow(J, 4.0) - pow(J, -6.0));
347 }
348
349 template <typename ST>
350 ST secondDerivativeImpl(const ST& J) const {
351 return (1.0 / 10.0) * (4 * pow(J, 3.0) + 6 * pow(J, -7.0));
352 }
353
354 [[nodiscard]] constexpr static std::string name() noexcept { return "Function 11"; }
355};
356
358
359} // namespace Ikarus::Materials
Helper for the Eigen::Tensor types.
Material property functions and conversion utilities.
Definition: arrudaboyce.hh:27
Interface for the volumetric part of a hyperelastic material. Has to be parametrized with a volumetri...
Definition: finiteelements/mechanics/materials/hyperelastic/volumetric/interface.hh:32
Default volumetric function.
Definition: volumetricfunctions.hh:26
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:42
ST firstDerivativeImpl(const ST &) const
Definition: volumetricfunctions.hh:33
ST secondDerivativeImpl(const ST &) const
Definition: volumetricfunctions.hh:38
ST storedEnergyImpl(const ST &) const
Definition: volumetricfunctions.hh:28
Volumetric function No. 1 found in Tab. 4.
Definition: volumetricfunctions.hh:52
ST secondDerivativeImpl(const ST &) const
Definition: volumetricfunctions.hh:64
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:54
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:68
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:59
Volumetric function No. 2 found in Tab. 4.
Definition: volumetricfunctions.hh:78
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:80
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:85
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:95
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:90
Volumetric function No. 3 found in Tab. 4.
Definition: volumetricfunctions.hh:105
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:112
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:121
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:107
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:117
Volumetric function No. 4 found in Tab. 4.
Definition: volumetricfunctions.hh:131
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:150
VF4(double beta)
Definition: volumetricfunctions.hh:147
double beta() const
Definition: volumetricfunctions.hh:152
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:133
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:138
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:143
Volumetric function No. 5 found in Tab. 4.
Definition: volumetricfunctions.hh:165
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:172
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:167
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:177
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:181
Volumetric function No. 6 found in Tab. 4.
Definition: volumetricfunctions.hh:191
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:207
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:193
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:203
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:198
Volumetric function No. 7 found in Tab. 4.
Definition: volumetricfunctions.hh:217
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:219
VF7(double beta)
Definition: volumetricfunctions.hh:233
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:224
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:236
double beta() const
Definition: volumetricfunctions.hh:238
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:229
Volumetric function No. 8 found in Tab. 4.
Definition: volumetricfunctions.hh:251
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:258
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:263
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:253
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:267
Volumetric function No. 9 found in Tab. 4.
Definition: volumetricfunctions.hh:277
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:279
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:284
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:293
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:289
Volumetric function No. 10 found in Tab. 4.
Definition: volumetricfunctions.hh:304
double beta() const
Definition: volumetricfunctions.hh:325
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:316
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:311
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:323
VF10(double beta)
Definition: volumetricfunctions.hh:320
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:306
Volumetric function No. 11 found in Tab. 4.
Definition: volumetricfunctions.hh:338
ST secondDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:350
ST firstDerivativeImpl(const ST &J) const
Definition: volumetricfunctions.hh:345
static constexpr std::string name() noexcept
Definition: volumetricfunctions.hh:354
ST storedEnergyImpl(const ST &J) const
Definition: volumetricfunctions.hh:340
Implementation of the volumetric part of a hyperelastic material.
Header file including concepts for hyperelastic material models.