version 0.4.1
Ikarus::Materials::GentT< ST_ > Struct Template Reference

Implementation of the Gent material model. More...

#include <ikarus/finiteelements/mechanics/materials/hyperelastic/deviatoric/gent.hh>

Public Types

using ScalarType = ST_
 
template<typename ST = ScalarType>
using PrincipalStretches = Eigen::Vector< ST, 3 >
 
template<typename ST = ScalarType>
using Invariants = PrincipalStretches< ST >
 
template<typename ST = ScalarType>
using FirstDerivative = Eigen::Vector< ST, dim >
 
template<typename ST = ScalarType>
using SecondDerivative = Eigen::Matrix< ST, dim, dim >
 
using MaterialParameters = GentMatParameters
 

Public Member Functions

 GentT (const MaterialParameters &matPar)
 Constructor for GentT. More...
 
MaterialParameters materialParametersImpl () const
 Returns the material parameters stored in the material. More...
 
template<typename ST = ScalarType>
ST storedEnergyImpl (const PrincipalStretches< ST > &lambda) const
 Computes the stored energy in the Gent material model. More...
 
template<typename ST = ScalarType>
FirstDerivative< ST > firstDerivativeImpl (const PrincipalStretches< ST > &lambda) const
 Computes the first derivative of the stored energy function w.r.t. the total principal stretches. More...
 
template<typename ST = ScalarType>
SecondDerivative< ST > secondDerivativeImpl (const PrincipalStretches< ST > &lambda) const
 Computes the second derivatives of the stored energy function w.r.t. the total principal stretches. More...
 
template<typename STO >
auto rebind () const
 Rebinds the material to a different scalar type. More...
 

Static Public Member Functions

static constexpr std::string name () noexcept
 

Static Public Attributes

static constexpr int dim = 3
 
static constexpr auto stretchTag = PrincipalStretchTags::deviatoric
 

Detailed Description

template<typename ST_>
struct Ikarus::Materials::GentT< ST_ >

The energy is computed as

\[ \hat{\Psi}(\la_1, \la_2, \la_3) = -\frac{\mu}{2} J_m \ln{(1-\frac{W_1 - 3}{J_m})}, \]

with \( J_m > W_1-3\).

The first derivatives w.r.t the total principal stretches are

\[ \fracpt{\Psi}{\la_i} = \frac{\mu J_m}{2(J_m - W_1) + 6}\fracpt{W_1}{\la_i}. \]

The second derivatives w.r.t the total principal stretches are

\[ \fracpt{^2 \Psi}{\la_i\partial\la_j} = \frac{\mu}{2\al} (\fracpt{^2 W_1}{\la_i\partial\la_j} + \frac{1}{\al J_m} \fracpt{W_1}{\la_i} \fracpt{W_1}{\la_j}) - \delta_{ij} \frac{\mu}{2\al\la_i} \fracpt{W_1}{\la_i}, \]

with \( \al = 1 - \frac{W_1 - 3}{J_m} \).

Remarks
See [1] for details on this material. For information on the deviatoric invariant \( W_1 \), see DeviatoricInvariants.
Template Parameters
ST_The underlying scalar type.

Member Typedef Documentation

◆ FirstDerivative

template<typename ST_ >
template<typename ST = ScalarType>
using Ikarus::Materials::GentT< ST_ >::FirstDerivative = Eigen::Vector<ST, dim>

◆ Invariants

template<typename ST_ >
template<typename ST = ScalarType>
using Ikarus::Materials::GentT< ST_ >::Invariants = PrincipalStretches<ST>

◆ MaterialParameters

template<typename ST_ >
using Ikarus::Materials::GentT< ST_ >::MaterialParameters = GentMatParameters

◆ PrincipalStretches

template<typename ST_ >
template<typename ST = ScalarType>
using Ikarus::Materials::GentT< ST_ >::PrincipalStretches = Eigen::Vector<ST, 3>

◆ ScalarType

template<typename ST_ >
using Ikarus::Materials::GentT< ST_ >::ScalarType = ST_

◆ SecondDerivative

template<typename ST_ >
template<typename ST = ScalarType>
using Ikarus::Materials::GentT< ST_ >::SecondDerivative = Eigen::Matrix<ST, dim, dim>

Constructor & Destructor Documentation

◆ GentT()

template<typename ST_ >
Ikarus::Materials::GentT< ST_ >::GentT ( const MaterialParameters matPar)
inlineexplicit
Parameters
Cmaterial constant
lambdaMmaximum stretch at which the polymer chain locks

Member Function Documentation

◆ firstDerivativeImpl()

template<typename ST_ >
template<typename ST = ScalarType>
FirstDerivative< ST > Ikarus::Materials::GentT< ST_ >::firstDerivativeImpl ( const PrincipalStretches< ST > &  lambda) const
inline
Parameters
lambdaprincipal stretches
Template Parameters
STthe scalartype of the principal stretches
Returns
ScalarType

◆ materialParametersImpl()

template<typename ST_ >
MaterialParameters Ikarus::Materials::GentT< ST_ >::materialParametersImpl ( ) const
inline

◆ name()

template<typename ST_ >
static constexpr std::string Ikarus::Materials::GentT< ST_ >::name ( )
inlinestaticconstexprnoexcept

◆ rebind()

template<typename ST_ >
template<typename STO >
auto Ikarus::Materials::GentT< ST_ >::rebind ( ) const
inline
Template Parameters
STOThe target scalar type.
Returns
GentT<ScalarTypeOther> The rebound Gent material.

◆ secondDerivativeImpl()

template<typename ST_ >
template<typename ST = ScalarType>
SecondDerivative< ST > Ikarus::Materials::GentT< ST_ >::secondDerivativeImpl ( const PrincipalStretches< ST > &  lambda) const
inline
Parameters
lambdaprincipal stretches
Template Parameters
STthe scalartype of the principal stretches
Returns
ScalarType

◆ storedEnergyImpl()

template<typename ST_ >
template<typename ST = ScalarType>
ST Ikarus::Materials::GentT< ST_ >::storedEnergyImpl ( const PrincipalStretches< ST > &  lambda) const
inline

Using only the first five terms of the inverse Langevin function.

Parameters
lambdaprincipal stretches
Template Parameters
STthe scalartype of the principal stretches
Returns
ScalarType

Member Data Documentation

◆ dim

template<typename ST_ >
constexpr int Ikarus::Materials::GentT< ST_ >::dim = 3
staticconstexpr

◆ stretchTag

template<typename ST_ >
constexpr auto Ikarus::Materials::GentT< ST_ >::stretchTag = PrincipalStretchTags::deviatoric
staticconstexpr

The documentation for this struct was generated from the following file: