version 0.4.1
utils/concepts.hh
Go to the documentation of this file.
1// SPDX-FileCopyrightText: 2021-2025 The Ikarus Developers mueller@ibb.uni-stuttgart.de
2// SPDX-License-Identifier: LGPL-3.0-or-later
3
9#pragma once
10
11#include <concepts>
12#include <type_traits>
13#include <utility>
14#include <vector>
15
16#include <dune/functions/functionspacebases/basistags.hh>
17#include <dune/functions/functionspacebases/lagrangebasis.hh>
18
19#include <Eigen/Dense>
20#include <Eigen/Sparse>
21
22#include <autodiff/forward/dual/dual.hpp>
23
27
28namespace Eigen {
29template <typename Derived>
30struct EigenBase;
31}
32
33namespace Ikarus {
34
35template <typename Derived>
37namespace Concepts {
38
45 template <typename T>
46 concept EigenType = std::is_base_of_v<Eigen::MatrixBase<std::decay_t<T>>, std::decay_t<T>>;
47
56 template <typename Basis>
57 concept FlatInterLeavedBasis = requires {
58 std::is_same_v<typename Basis::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::FlatInterleaved>;
59 };
60
61 namespace Impl {
62 template <template <typename, int, typename> class U, typename T>
63 struct LagrangeNodeHelper : std::false_type
64 {
65 };
66 template <template <typename, int, typename> class U, typename GV, int k, typename R>
67 struct LagrangeNodeHelper<U, U<GV, k, R>> : std::true_type
68 {
69 };
70
71 template <template <typename, int, typename> class U, typename T, int k>
72 struct LagrangeNodeHelperOfOrder : std::false_type
73 {
74 };
75 template <template <typename, int, typename> class U, typename GV, int k, typename R>
76 struct LagrangeNodeHelperOfOrder<U, U<GV, k, R>, k> : std::true_type
77 {
78 };
79 } // namespace Impl
80
88 template <typename N>
89 concept LagrangeNode = Impl::LagrangeNodeHelper<Dune::Functions::LagrangeNode, N>::value;
90
98 template <typename N, int order>
99 concept LagrangeNodeOfOrder = Impl::LagrangeNodeHelperOfOrder<Dune::Functions::LagrangeNode, N, order>::value;
100
109 template <typename B>
110 concept FlatLexicographicBasis = requires {
111 std::is_same_v<typename B::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::FlatLexicographic>;
112 };
113
122 template <typename B>
124
133 template <typename Basis>
134 concept BlockedInterLeavedBasis = requires {
135 std::is_same_v<typename Basis::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::BlockedInterleaved>;
136 };
137
146 template <typename B>
147 concept BlockedLexicographicBasis = requires {
148 std::is_same_v<typename B::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::BlockedLexicographic>;
149 };
150
156 template <typename DLB>
157 concept DuneLocalBasis = requires(DLB& duneLocalBasis) {
158 typename DLB::Traits::RangeType;
159 typename DLB::Traits::JacobianType;
160 DLB::Traits::dimDomain;
161 typename DLB::Traits::DomainType;
162
163 typename DLB::Traits::DomainFieldType;
164 typename DLB::Traits::RangeFieldType;
165
166 duneLocalBasis.evaluateFunction(std::declval<typename DLB::Traits::DomainType>(),
167 std::declval<std::vector<typename DLB::Traits::RangeType>&>());
168 duneLocalBasis.evaluateJacobian(std::declval<typename DLB::Traits::DomainType>(),
169 std::declval<std::vector<typename DLB::Traits::JacobianType>&>());
170 };
171
181 template <typename B>
183
191 template <typename PF, typename F, typename SA>
192 concept PathFollowingStrategy = requires(PF pft, F nop, SA args, typename F::Domain req) {
193 { pft(args) } -> std::same_as<void>;
194 { pft.initialPrediction(req, nop, args) } -> std::same_as<void>;
195 { pft.intermediatePrediction(req, nop, args) } -> std::same_as<void>;
196 };
197
206 template <typename ASS, typename NLSI, typename SA, typename DifferentiableFunction>
208 requires(ASS adaptiveStepSizing, NLSI info, SA args, DifferentiableFunction nop) {
209 { adaptiveStepSizing(info, args, nop) } -> std::same_as<void>;
210 { adaptiveStepSizing.targetIterations() } -> std::same_as<int>;
211 { adaptiveStepSizing.setTargetIterations(std::declval<int>()) } -> std::same_as<void>;
212 };
213
222 template <typename LS, typename M, typename V>
223 concept LinearSolverCheck = requires(LS linearSolver, M A, V vec) {
224 linearSolver.analyzePattern(A);
225 linearSolver.factorize(A);
226 linearSolver.solve(vec, vec);
227 };
228
236 template <typename NLS>
238 not(std::is_same_v<typename NLS::DifferentiableFunction::Domain, double> and
239 ((traits::isSpecializationTypeAndNonTypes<
240 Eigen::Matrix, typename NLS::DifferentiableFunction::Traits::template Range<1>>::value) or
241 (traits::isSpecializationTypeNonTypeAndType<
242 Eigen::SparseMatrix, typename NLS::DifferentiableFunction::Traits::template Range<1>>::value)));
243 };
244
252 template <typename L, typename R>
253 concept MultiplyAble = requires(L x, R y) { x* y; };
254
262 template <typename L, typename R>
263 concept AddAble = requires(L x, R y) { x + y; };
264
272 template <typename L, typename R>
273 concept SubstractAble = requires(L x, R y) { x - y; };
274
283 template <typename L, typename R>
284 concept MultiplyAssignAble = requires(L x, R y) { x *= y; };
285
294 template <typename L, typename R>
295 concept DivideAssignAble = requires(L x, R y) { x /= y; };
296
305 template <typename L, typename R>
306 concept AddAssignAble = requires(L x, R y) { x += y; };
307
316 template <typename L, typename R>
317 concept SubstractAssignAble = requires(L x, R y) { x -= y; };
318
326 template <typename L, typename R>
327 concept DivideAble = requires(L x, R y) { x / y; };
328
335 template <typename L>
336 concept NegateAble = requires(L x) { -x; };
337
344 template <typename L>
345 concept TransposeAble = requires(L x) { transpose(x); };
346
353 template <typename Op, typename... Args>
354 concept IsFunctorWithArgs = requires(Op op, Args... args) { op(args...); };
355
361 template <typename V>
362 concept EigenVector = static_cast<bool>(V::IsVectorAtCompileTime);
363
369 template <typename M>
370 concept EigenMatrix = traits::isSpecializationTypeAndNonTypes<Eigen::Matrix, M>::value;
371
372#define MAKE_EIGEN_FIXED_VECTOR_CONCEPT(Size) \
373 template <typename V> \
374 concept EigenVector##Size = \
375 static_cast<bool>(V::IsVectorAtCompileTime) and static_cast<bool>(V::SizeAtCompileTime == Size);
376
383
384#define MAKE_EIGEN_FIXED_MATRIX_CONCEPT(Size1, Size2) \
385 template <typename M> \
386 concept EigenMatrix##Size1##Size2 = static_cast<bool>(std::remove_cvref_t<M>::RowsAtCompileTime == Size1) and \
387 static_cast<bool>(std::remove_cvref_t<M>::ColsAtCompileTime == Size2);
388
390
393
398
405
414
425
426#define MAKE_EIGEN_FIXED_MATRIX_OR_VOIGT_CONCEPT(Size1, Size2) \
427 template <typename M> \
428 concept EigenMatrixOrVoigtNotation##Size1 = EigenMatrix##Size1##Size1<M> or EigenVector##Size2<M>;
429
433
434 namespace Impl {
435 template <template <typename...> class MaterialToCheck, typename Material>
436 consteval bool isMaterial() {
437 if constexpr (traits::isSpecialization<MaterialToCheck, Material>::value)
438 return true;
439
440 if constexpr (Material::isReduced) {
441 if constexpr (traits::isSpecialization<MaterialToCheck, typename Material::Underlying>::value) {
442 return true;
443 } else {
444 return false;
445 }
446 } else
447 return false;
448 }
449 } // namespace Impl
450
463 template <template <typename...> class MaterialToCheck, typename Material>
464 concept IsMaterial = Impl::isMaterial<MaterialToCheck, Material>();
465
466 namespace Impl {
467 template <typename T>
468 concept ResultType = requires(T t) {
469 typename T::type; // The nested type 'type'
470 typename T::Vectorizer; // The nested type 'Vectorizer'
471 typename T::Matricizer; // The nested type 'Matricizer'
472 { toString(t) } -> std::same_as<std::string>; // The toString function
473 };
474 } // namespace Impl
475
482 template <typename MAT>
484
494 template <template <typename, int, int> typename RT>
495 concept ResultType =
496 Impl::ResultType<RT<double, 1, 1>> or Impl::ResultType<RT<double, 1, 2>> or Impl::ResultType<RT<double, 1, 3>> or
497 Impl::ResultType<RT<double, 2, 3>> or Impl::ResultType<RT<double, 3, 3>>;
498
506 template <typename T>
507 concept FlatAssembler = requires(T t, const typename T::FERequirement& req,
508 typename T::AffordanceCollectionType affordance, DBCOption dbcOption) {
509 { t.requirement() } -> std::convertible_to<typename T::FERequirement&>;
510 { t.affordanceCollection() } -> std::convertible_to<typename T::AffordanceCollectionType>;
511 { t.dBCOption() } -> std::convertible_to<DBCOption>;
512
513 { t.bind(req, affordance, dbcOption) } -> std::same_as<void>;
514 { t.bind(req) } -> std::same_as<void>;
515 { t.bind(affordance) } -> std::same_as<void>;
516 { t.bind(dbcOption) } -> std::same_as<void>;
517
518 { t.bound() } -> std::convertible_to<bool>;
519 { t.boundToRequirement() } -> std::convertible_to<bool>;
520 { t.boundToAffordanceCollection() } -> std::convertible_to<bool>;
521 { t.boundToDBCOption() } -> std::convertible_to<bool>;
522 { t.estimateOfConnectivity() } -> std::convertible_to<size_t>;
523
524 { t.createFullVector(std::declval<Eigen::Ref<const Eigen::VectorXd>>()) } -> std::convertible_to<Eigen::VectorXd>;
525 { t.constraintsBelow(std::declval<size_t>()) } -> std::convertible_to<size_t>;
526 { t.isConstrained(std::declval<size_t>()) } -> std::convertible_to<bool>;
527 { t.size() } -> std::convertible_to<size_t>;
528 { t.reducedSize() } -> std::convertible_to<size_t>;
529 };
530
537 template <typename T>
539 Concepts::FlatAssembler<T> and requires(T t, const typename T::FERequirement& req,
540 typename T::AffordanceCollectionType affordance, DBCOption dbcOption) {
541 { t.scalar(req, affordance.scalarAffordance()) } -> std::convertible_to<const double&>;
542 { t.scalar() } -> std::convertible_to<const double&>;
543 };
544
551 template <typename T>
553 requires(T t, const typename T::FERequirement& req,
554 typename T::AffordanceCollectionType affordance, DBCOption dbcOption) {
555 {
556 t.vector(req, affordance.vectorAffordance(), dbcOption)
557 } -> std::convertible_to<const Eigen::VectorXd&>;
558 { t.vector(dbcOption) } -> std::convertible_to<const Eigen::VectorXd&>;
559 { t.vector() } -> std::convertible_to<const Eigen::VectorXd&>;
560 };
561
568 template <typename T>
570 requires(T t, const typename T::FERequirement& req,
571 typename T::AffordanceCollectionType affordance, DBCOption dbcOption) {
572 { t.matrix(req, affordance.matrixAffordance(), dbcOption) };
573 { t.matrix(dbcOption) };
574 { t.matrix() };
575 };
576
577 // adapted from /dune/dune-vtk/dune/vtk/utility/concepts.hh
578 template <class DC>
579 concept DataCollector = requires(DC dc) {
580 typename DC::GridView;
581 { dc.update() } -> std::same_as<void>;
582 { dc.numPoints() } -> std::convertible_to<std::uint64_t>;
583 { dc.numCells() } -> std::convertible_to<std::uint64_t>;
584 { dc.gridView() } -> std::same_as<const typename DC::GridView&>;
585 };
586
587 template <class GV>
588 concept GridView = requires(GV g) {
589 typename GV::Grid;
590 GV::dimension;
591 GV::dimensionworld;
592
593 { g.grid() };
594 };
595
596 namespace Impl {
597 template <typename T>
598 struct is_dual : std::false_type
599 {
600 };
601
602 // Specialization for Dual<T, U>: this will be true for Dual types
603 template <typename T, typename U>
604 struct is_dual<autodiff::detail::Dual<T, U>> : std::true_type
605 {
606 };
607 } // namespace Impl
608
614 template <typename T>
615 concept AutodiffScalar = Impl::is_dual<T>::value;
616
622 template <typename T>
623 concept SmartPointer = traits::isSharedPtr<T>::value || traits::isUniquePtr<T>::value;
624
630 template <typename T>
632
633 template <typename S>
634 concept ControlRoutineState = requires(S s) {
635 typename S::Domain;
636
637 // { s.domain } -> std::convertible_to<const typename S::Domain>;
638 { s.loadStep } -> std::convertible_to<int>;
639 { s.stepSize } -> std::convertible_to<double>;
640 };
641
642 namespace Formulations {
649 template <StrainTags T1, StressTags T2>
652
659 template <StrainTags T1, StressTags T2>
660 concept TwoPoint =
662 } // namespace Formulations
663
664} // namespace Concepts
665
666namespace traits {
667#ifndef DOXYGEN
668
669 // Primary template: for non-pointer types.
670 template <typename T, bool = Concepts::PointerOrSmartPointer<T>>
671 struct MaybeDereference
672 {
673 using type = T;
674 };
675
676 // Specialization: for pointer (or smart pointer) types.
677 template <typename T>
678 struct MaybeDereference<T, true>
679 {
680 // We know T is pointer-like, so *std::declval<T&>() is well-formed.
681 using type = std::remove_reference_t<decltype(*std::declval<T&>())>;
682 };
683#endif
684
685 template <typename T>
686 using MaybeDereferencedType = typename MaybeDereference<T>::type;
687
688} // namespace traits
689} // namespace Ikarus
Contains stl-like type traits.
Definition of several material related enums.
Definition: assemblermanipulatorbuildingblocks.hh:22
DBCOption
Definition: dirichletbcenforcement.hh:8
auto transpose(const Eigen::EigenBase< Derived > &A)
constexpr std::string toString(DBCOption _e)
Definition: dirichletbcenforcement.hh:8
Definition: truncatedconjugategradient.hh:24
typename MaybeDereference< T >::type MaybeDereferencedType
Definition: utils/concepts.hh:686
Definition: utils/concepts.hh:30
Concept to check if a type is derived from Eigen::MatrixBase.
Definition: utils/concepts.hh:46
Concept to check if a basis uses FlatInterleaved indexing strategy.
Definition: utils/concepts.hh:57
Concept to check if a node in a basis tree is a Lagrangian node.
Definition: utils/concepts.hh:89
Definition: utils/concepts.hh:99
Concept to check if a basis uses FlatLexicographic indexing strategy.
Definition: utils/concepts.hh:110
Concept to check if a basis uses FlatIndex indexing strategy.
Definition: utils/concepts.hh:123
Concept to check if a basis uses BlockedInterleaved indexing strategy.
Definition: utils/concepts.hh:134
Concept to check if a basis uses BlockedLexicographic indexing strategy.
Definition: utils/concepts.hh:147
Concept to check if a local basis is a duneLocalBasis.
Definition: utils/concepts.hh:157
Concept to check if a basis uses either BlockedLexicographic or BlockedInterleaved indexing strategy.
Definition: utils/concepts.hh:182
Concept defining the requirements for a path-following strategy.
Definition: utils/concepts.hh:192
Concept to check if a type implements all the needed functions to be an adaptive step sizing method.
Definition: utils/concepts.hh:207
Concept to check if a linear solver implements all the needed functions for given vector and matrix t...
Definition: utils/concepts.hh:223
Concept to check if a non-linear solver with its non-linear operator satisfies requirements for path ...
Definition: utils/concepts.hh:237
Concept defining the requirements for types that support multiplication.
Definition: utils/concepts.hh:253
Concept defining the requirements for types that support addition.
Definition: utils/concepts.hh:263
Concept defining the requirements for types that support subtraction.
Definition: utils/concepts.hh:273
Concept defining the requirements for types that support in-place multiplication.
Definition: utils/concepts.hh:284
Concept defining the requirements for types that support in-place division.
Definition: utils/concepts.hh:295
Concept defining the requirements for types that support in-place addition.
Definition: utils/concepts.hh:306
Concept defining the requirements for types that support in-place subtraction.
Definition: utils/concepts.hh:317
Concept defining the requirements for types that support division.
Definition: utils/concepts.hh:327
Concept defining the requirements for types that support negation.
Definition: utils/concepts.hh:336
Concept defining the requirements for types that support transposition.
Definition: utils/concepts.hh:345
Concept defining the requirements for functors with arguments.
Definition: utils/concepts.hh:354
Concept defining the requirements for Eigen vectors.
Definition: utils/concepts.hh:362
Concept defining the requirements for Eigen matrices. This also includes Eigen vectors.
Definition: utils/concepts.hh:370
Concept defining the requirements for a material type.
Definition: utils/concepts.hh:464
Concepts defining the requirements for a material to be geometrically linear This is the case when th...
Definition: utils/concepts.hh:483
A concept to check if a template type satisfies the ResultType requirements.
Definition: utils/concepts.hh:495
Concept representing the requirements for a FlatAssembler.A type T satisfies FlatAssembler if it prov...
Definition: utils/concepts.hh:507
Concept representing the requirements for a ScalarFlatAssembler.A type T satisfies ScalarFlatAssemble...
Definition: utils/concepts.hh:538
Concept representing the requirements for a VectorFlatAssembler.A type T satisfies VectorFlatAssemble...
Definition: utils/concepts.hh:552
Concept representing the requirements for a MatrixFlatAssembler.A type T satisfies MatrixFlatAssemble...
Definition: utils/concepts.hh:569
Definition: utils/concepts.hh:579
Definition: utils/concepts.hh:588
Concept to check if the underlying scalar type is a dual type.
Definition: utils/concepts.hh:615
Concept to check if the type is either a unique_ptr or a shared_ptr.
Definition: utils/concepts.hh:623
Definition: utils/concepts.hh:631
Definition: utils/concepts.hh:634
Concept to check if the underlying strain and stress tag correspond to a total Lagrangian formulation...
Definition: utils/concepts.hh:650
Concept to check if the underlying strain and stress tag correspond to a two point formulation.
Definition: utils/concepts.hh:660
Concept to check if a type is a pointer or nullptr_t.
Definition: traits.hh:30
#define MAKE_EIGEN_FIXED_MATRIX_CONCEPT(Size1, Size2)
Definition: utils/concepts.hh:384
#define MAKE_EIGEN_FIXED_MATRIX_OR_VOIGT_CONCEPT(Size1, Size2)
Definition: utils/concepts.hh:426
#define MAKE_EIGEN_FIXED_VECTOR_CONCEPT(Size)
Definition: utils/concepts.hh:372