16#include <dune/functions/functionspacebases/basistags.hh>
17#include <dune/functions/functionspacebases/lagrangebasis.hh>
20#include <Eigen/Sparse>
22#include <autodiff/forward/dual/dual.hpp>
29template <
typename Derived>
35template <
typename Derived>
46 concept EigenType = std::is_base_of_v<Eigen::MatrixBase<std::decay_t<T>>, std::decay_t<T>>;
56 template <
typename Basis>
58 std::is_same_v<typename Basis::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::FlatInterleaved>;
62 template <
template <
typename,
int,
typename>
class U,
typename T>
63 struct LagrangeNodeHelper : std::false_type
66 template <
template <
typename,
int,
typename>
class U,
typename GV,
int k,
typename R>
67 struct LagrangeNodeHelper<U, U<GV, k, R>> : std::true_type
71 template <
template <
typename,
int,
typename>
class U,
typename T,
int k>
72 struct LagrangeNodeHelperOfOrder : std::false_type
75 template <
template <
typename,
int,
typename>
class U,
typename GV,
int k,
typename R>
76 struct LagrangeNodeHelperOfOrder<U, U<GV, k, R>, k> : std::true_type
89 concept LagrangeNode = Impl::LagrangeNodeHelper<Dune::Functions::LagrangeNode, N>::value;
98 template <
typename N,
int order>
99 concept LagrangeNodeOfOrder = Impl::LagrangeNodeHelperOfOrder<Dune::Functions::LagrangeNode, N, order>::value;
109 template <
typename B>
111 std::is_same_v<typename B::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::FlatLexicographic>;
122 template <
typename B>
133 template <
typename Basis>
135 std::is_same_v<typename Basis::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::BlockedInterleaved>;
146 template <
typename B>
148 std::is_same_v<typename B::PreBasis::IndexMergingStrategy, Dune::Functions::BasisFactory::BlockedLexicographic>;
156 template <
typename DLB>
158 typename DLB::Traits::RangeType;
159 typename DLB::Traits::JacobianType;
160 DLB::Traits::dimDomain;
161 typename DLB::Traits::DomainType;
163 typename DLB::Traits::DomainFieldType;
164 typename DLB::Traits::RangeFieldType;
166 duneLocalBasis.evaluateFunction(std::declval<typename DLB::Traits::DomainType>(),
167 std::declval<std::vector<typename DLB::Traits::RangeType>&>());
168 duneLocalBasis.evaluateJacobian(std::declval<typename DLB::Traits::DomainType>(),
169 std::declval<std::vector<typename DLB::Traits::JacobianType>&>());
181 template <
typename B>
191 template <
typename PF,
typename F,
typename SA>
193 { pft(args) } -> std::same_as<void>;
194 { pft.initialPrediction(req, nop, args) } -> std::same_as<void>;
195 { pft.intermediatePrediction(req, nop, args) } -> std::same_as<void>;
206 template <
typename ASS,
typename NLSI,
typename SA,
typename DifferentiableFunction>
208 requires(ASS adaptiveStepSizing, NLSI info, SA args, DifferentiableFunction nop) {
209 { adaptiveStepSizing(info, args, nop) } -> std::same_as<void>;
210 { adaptiveStepSizing.targetIterations() } -> std::same_as<int>;
211 { adaptiveStepSizing.setTargetIterations(std::declval<int>()) } -> std::same_as<void>;
222 template <
typename LS,
typename M,
typename V>
224 linearSolver.analyzePattern(A);
225 linearSolver.factorize(A);
226 linearSolver.solve(vec, vec);
236 template <
typename NLS>
238 not(std::is_same_v<typename NLS::DifferentiableFunction::Domain, double> and
239 ((traits::isSpecializationTypeAndNonTypes<
240 Eigen::Matrix,
typename NLS::DifferentiableFunction::Traits::template Range<1>>::value) or
241 (traits::isSpecializationTypeNonTypeAndType<
242 Eigen::SparseMatrix,
typename NLS::DifferentiableFunction::Traits::template Range<1>>::value)));
252 template <
typename L,
typename R>
262 template <
typename L,
typename R>
263 concept AddAble =
requires(L x, R y) { x + y; };
272 template <
typename L,
typename R>
283 template <
typename L,
typename R>
294 template <
typename L,
typename R>
305 template <
typename L,
typename R>
316 template <
typename L,
typename R>
326 template <
typename L,
typename R>
335 template <
typename L>
344 template <
typename L>
353 template <
typename Op,
typename... Args>
361 template <
typename V>
362 concept EigenVector =
static_cast<bool>(V::IsVectorAtCompileTime);
369 template <
typename M>
370 concept EigenMatrix = traits::isSpecializationTypeAndNonTypes<Eigen::Matrix, M>::value;
372#define MAKE_EIGEN_FIXED_VECTOR_CONCEPT(Size) \
373 template <typename V> \
374 concept EigenVector##Size = \
375 static_cast<bool>(V::IsVectorAtCompileTime) and static_cast<bool>(V::SizeAtCompileTime == Size);
384#define MAKE_EIGEN_FIXED_MATRIX_CONCEPT(Size1, Size2) \
385 template <typename M> \
386 concept EigenMatrix##Size1##Size2 = static_cast<bool>(std::remove_cvref_t<M>::RowsAtCompileTime == Size1) and \
387 static_cast<bool>(std::remove_cvref_t<M>::ColsAtCompileTime == Size2);
426#define MAKE_EIGEN_FIXED_MATRIX_OR_VOIGT_CONCEPT(Size1, Size2) \
427 template <typename M> \
428 concept EigenMatrixOrVoigtNotation##Size1 = EigenMatrix##Size1##Size1<M> or EigenVector##Size2<M>;
435 template <
template <
typename...>
class MaterialToCheck,
typename Material>
436 consteval bool isMaterial() {
437 if constexpr (traits::isSpecialization<MaterialToCheck, Material>::value)
440 if constexpr (Material::isReduced) {
441 if constexpr (traits::isSpecialization<MaterialToCheck, typename Material::Underlying>::value) {
463 template <
template <
typename...>
class MaterialToCheck,
typename Material>
464 concept IsMaterial = Impl::isMaterial<MaterialToCheck, Material>();
467 template <
typename T>
470 typename T::Vectorizer;
471 typename T::Matricizer;
472 {
toString(t) } -> std::same_as<std::string>;
482 template <
typename MAT>
494 template <
template <
typename,
int,
int>
typename RT>
496 Impl::ResultType<RT<double, 1, 1>> or Impl::ResultType<RT<double, 1, 2>> or Impl::ResultType<RT<double, 1, 3>> or
497 Impl::ResultType<RT<double, 2, 3>> or Impl::ResultType<RT<double, 3, 3>>;
506 template <
typename T>
508 typename T::AffordanceCollectionType affordance,
DBCOption dbcOption) {
509 { t.requirement() } -> std::convertible_to<typename T::FERequirement&>;
510 { t.affordanceCollection() } -> std::convertible_to<typename T::AffordanceCollectionType>;
511 { t.dBCOption() } -> std::convertible_to<DBCOption>;
513 { t.bind(req, affordance, dbcOption) } -> std::same_as<void>;
514 { t.bind(req) } -> std::same_as<void>;
515 { t.bind(affordance) } -> std::same_as<void>;
516 { t.bind(dbcOption) } -> std::same_as<void>;
518 { t.bound() } -> std::convertible_to<bool>;
519 { t.boundToRequirement() } -> std::convertible_to<bool>;
520 { t.boundToAffordanceCollection() } -> std::convertible_to<bool>;
521 { t.boundToDBCOption() } -> std::convertible_to<bool>;
522 { t.estimateOfConnectivity() } -> std::convertible_to<size_t>;
524 { t.createFullVector(std::declval<Eigen::Ref<const Eigen::VectorXd>>()) } -> std::convertible_to<Eigen::VectorXd>;
525 { t.constraintsBelow(std::declval<size_t>()) } -> std::convertible_to<size_t>;
526 { t.isConstrained(std::declval<size_t>()) } -> std::convertible_to<bool>;
527 { t.size() } -> std::convertible_to<size_t>;
528 { t.reducedSize() } -> std::convertible_to<size_t>;
537 template <
typename T>
540 typename T::AffordanceCollectionType affordance,
DBCOption dbcOption) {
541 { t.scalar(req, affordance.scalarAffordance()) } -> std::convertible_to<const double&>;
542 { t.scalar() } -> std::convertible_to<const double&>;
551 template <
typename T>
553 requires(T t,
const typename T::FERequirement& req,
554 typename T::AffordanceCollectionType affordance,
DBCOption dbcOption) {
556 t.vector(req, affordance.vectorAffordance(), dbcOption)
557 } -> std::convertible_to<const Eigen::VectorXd&>;
558 { t.vector(dbcOption) } -> std::convertible_to<const Eigen::VectorXd&>;
559 { t.vector() } -> std::convertible_to<const Eigen::VectorXd&>;
568 template <
typename T>
570 requires(T t,
const typename T::FERequirement& req,
571 typename T::AffordanceCollectionType affordance,
DBCOption dbcOption) {
572 { t.matrix(req, affordance.matrixAffordance(), dbcOption) };
573 { t.matrix(dbcOption) };
580 typename DC::GridView;
581 { dc.update() } -> std::same_as<void>;
582 { dc.numPoints() } -> std::convertible_to<std::uint64_t>;
583 { dc.numCells() } -> std::convertible_to<std::uint64_t>;
584 { dc.gridView() } -> std::same_as<const typename DC::GridView&>;
597 template <
typename T>
598 struct is_dual : std::false_type
603 template <
typename T,
typename U>
604 struct is_dual<autodiff::detail::Dual<T, U>> : std::true_type
614 template <
typename T>
622 template <
typename T>
623 concept SmartPointer = traits::isSharedPtr<T>::value || traits::isUniquePtr<T>::value;
630 template <
typename T>
633 template <
typename S>
638 { s.loadStep } -> std::convertible_to<int>;
639 { s.stepSize } -> std::convertible_to<double>;
642 namespace Formulations {
649 template <StrainTags T1, StressTags T2>
659 template <StrainTags T1, StressTags T2>
670 template <
typename T,
bool = Concepts::Po
interOrSmartPo
inter<T>>
671 struct MaybeDereference
677 template <
typename T>
678 struct MaybeDereference<T, true>
681 using type = std::remove_reference_t<decltype(*std::declval<T&>())>;
685 template <
typename T>
Contains stl-like type traits.
Definition of several material related enums.
Definition: assemblermanipulatorbuildingblocks.hh:22
DBCOption
Definition: dirichletbcenforcement.hh:8
auto transpose(const Eigen::EigenBase< Derived > &A)
constexpr std::string toString(DBCOption _e)
Definition: dirichletbcenforcement.hh:8
Definition: truncatedconjugategradient.hh:24
typename MaybeDereference< T >::type MaybeDereferencedType
Definition: utils/concepts.hh:686
Definition: utils/concepts.hh:30
Concept to check if a type is derived from Eigen::MatrixBase.
Definition: utils/concepts.hh:46
Concept to check if a basis uses FlatInterleaved indexing strategy.
Definition: utils/concepts.hh:57
Concept to check if a node in a basis tree is a Lagrangian node.
Definition: utils/concepts.hh:89
Definition: utils/concepts.hh:99
Concept to check if a basis uses FlatLexicographic indexing strategy.
Definition: utils/concepts.hh:110
Concept to check if a basis uses FlatIndex indexing strategy.
Definition: utils/concepts.hh:123
Concept to check if a basis uses BlockedInterleaved indexing strategy.
Definition: utils/concepts.hh:134
Concept to check if a basis uses BlockedLexicographic indexing strategy.
Definition: utils/concepts.hh:147
Concept to check if a local basis is a duneLocalBasis.
Definition: utils/concepts.hh:157
Concept to check if a basis uses either BlockedLexicographic or BlockedInterleaved indexing strategy.
Definition: utils/concepts.hh:182
Concept defining the requirements for a path-following strategy.
Definition: utils/concepts.hh:192
Concept to check if a type implements all the needed functions to be an adaptive step sizing method.
Definition: utils/concepts.hh:207
Concept to check if a linear solver implements all the needed functions for given vector and matrix t...
Definition: utils/concepts.hh:223
Concept to check if a non-linear solver with its non-linear operator satisfies requirements for path ...
Definition: utils/concepts.hh:237
Concept defining the requirements for types that support multiplication.
Definition: utils/concepts.hh:253
Concept defining the requirements for types that support addition.
Definition: utils/concepts.hh:263
Concept defining the requirements for types that support subtraction.
Definition: utils/concepts.hh:273
Concept defining the requirements for types that support in-place multiplication.
Definition: utils/concepts.hh:284
Concept defining the requirements for types that support in-place division.
Definition: utils/concepts.hh:295
Concept defining the requirements for types that support in-place addition.
Definition: utils/concepts.hh:306
Concept defining the requirements for types that support in-place subtraction.
Definition: utils/concepts.hh:317
Concept defining the requirements for types that support division.
Definition: utils/concepts.hh:327
Concept defining the requirements for types that support negation.
Definition: utils/concepts.hh:336
Concept defining the requirements for types that support transposition.
Definition: utils/concepts.hh:345
Concept defining the requirements for functors with arguments.
Definition: utils/concepts.hh:354
Concept defining the requirements for Eigen vectors.
Definition: utils/concepts.hh:362
Concept defining the requirements for Eigen matrices. This also includes Eigen vectors.
Definition: utils/concepts.hh:370
Concept defining the requirements for a material type.
Definition: utils/concepts.hh:464
Concepts defining the requirements for a material to be geometrically linear This is the case when th...
Definition: utils/concepts.hh:483
A concept to check if a template type satisfies the ResultType requirements.
Definition: utils/concepts.hh:495
Concept representing the requirements for a FlatAssembler.A type T satisfies FlatAssembler if it prov...
Definition: utils/concepts.hh:507
Concept representing the requirements for a ScalarFlatAssembler.A type T satisfies ScalarFlatAssemble...
Definition: utils/concepts.hh:538
Concept representing the requirements for a VectorFlatAssembler.A type T satisfies VectorFlatAssemble...
Definition: utils/concepts.hh:552
Concept representing the requirements for a MatrixFlatAssembler.A type T satisfies MatrixFlatAssemble...
Definition: utils/concepts.hh:569
Definition: utils/concepts.hh:579
Definition: utils/concepts.hh:588
Concept to check if the underlying scalar type is a dual type.
Definition: utils/concepts.hh:615
Concept to check if the type is either a unique_ptr or a shared_ptr.
Definition: utils/concepts.hh:623
Definition: utils/concepts.hh:631
Definition: utils/concepts.hh:634
Concept to check if the underlying strain and stress tag correspond to a total Lagrangian formulation...
Definition: utils/concepts.hh:650
Concept to check if the underlying strain and stress tag correspond to a two point formulation.
Definition: utils/concepts.hh:660
Concept to check if a type is a pointer or nullptr_t.
Definition: traits.hh:30
#define MAKE_EIGEN_FIXED_MATRIX_CONCEPT(Size1, Size2)
Definition: utils/concepts.hh:384
#define MAKE_EIGEN_FIXED_MATRIX_OR_VOIGT_CONCEPT(Size1, Size2)
Definition: utils/concepts.hh:426
#define MAKE_EIGEN_FIXED_VECTOR_CONCEPT(Size)
Definition: utils/concepts.hh:372