Implementation of the Linear Elasticity material model.The energy is computed as. More...
#include <ikarus/finiteelements/mechanics/materials/linearelasticity.hh>
Public Types | |
| using | ScalarType = ScalarType_ |
| using | Base = StVenantKirchhoffT< ScalarType > |
| using | field_type = ScalarType |
| using | StrainMatrix = Eigen::Matrix< ScalarType, worldDimension, worldDimension > |
| using | StressMatrix = StrainMatrix |
| using | MaterialImplType = LinearElasticityT< ScalarType_ > |
| Type of material implementation. More... | |
Public Member Functions | |
| constexpr std::string | nameImpl () const noexcept |
| LinearElasticityT (const LamesFirstParameterAndShearModulus &mpt) | |
| Constructor for LinearElasticityT. More... | |
| template<typename Derived > | |
| ScalarType | storedEnergyImpl (const Eigen::MatrixBase< Derived > &E) const |
| Calculates the stored energy in the material. More... | |
| template<bool voigt, typename Derived > | |
| auto | stressesImpl (const Eigen::MatrixBase< Derived > &E) const |
| Calculates the stresses in the material. More... | |
| template<bool voigt, typename Derived > | |
| auto | tangentModuliImpl (const Eigen::MatrixBase< Derived > &E) const |
| Calculates the tangent moduli in the material. More... | |
| template<typename ScalarTypeOther > | |
| auto | rebind () const |
| Rebind material to a different scalar type. More... | |
| constexpr const LinearElasticityT< ScalarType_ > & | impl () const |
| Const accessor to the underlying material (CRTP). More... | |
| constexpr LinearElasticityT< ScalarType_ > & | impl () |
| Accessor to the underlying material (CRTP). More... | |
| constexpr std::string | name () const |
| Get the name of the implemented material. More... | |
| auto | storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const |
| Return the stored potential energy of the material. More... | |
| auto | stresses (const Eigen::MatrixBase< Derived > &Eraw) const |
| Get the stresses of the material. More... | |
| auto | tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const |
| Get the tangentModuli of the material. More... | |
Public Attributes | |
| StVenantKirchhoffT< ScalarType > | svk |
Static Public Attributes | |
| static constexpr int | worldDimension = 3 |
| static constexpr auto | strainTag = StrainTags::linear |
| static constexpr auto | stressTag = StressTags::linear |
| static constexpr auto | tangentModuliTag = TangentModuliTags::Material |
| static constexpr bool | energyAcceptsVoigt = Base::energyAcceptsVoigt |
| static constexpr bool | stressToVoigt = Base::stressToVoigt |
| static constexpr bool | stressAcceptsVoigt = Base::stressAcceptsVoigt |
| static constexpr bool | moduliToVoigt = Base::moduliToVoigt |
| static constexpr bool | moduliAcceptsVoigt = Base::moduliAcceptsVoigt |
| static constexpr double | derivativeFactor = 1 |
| static constexpr bool | isReduced |
| Static constant for determining if the material has vanishing stress components (is reduced). More... | |
\[ \psi(\Bvep) = \frac{\lambda}{2} (\tr \Bvep)^2 +\mu \tr (\Bvep^2) ,\]
where \( \Bvep \) denotes the linear strain tensor.
The second Piola-Kirchhoff stresses are computed as
\[ \BS(\Bvep) =\fracpt{\psi(\Bvep)}{\Bvep} = \lambda \tr \Bvep \BI +2 \mu \Bvep,\]
and the material tangent moduli are computed as
\[ \BBC(\Bvep) =\fracpt{^2\psi(\Bvep)}{\Bvep^2} = \lambda \tr \Bvep \CI +2 \mu \CI^{\mathrm{sym}},\]
where \( \CI_{IJKL} = \de_{IJ}\de_{KL}\) and \( \CI_{IJKL}^\mathrm{sym} = \frac{1}{2}(\de_{IK}\de_{JL}+ \de_{IL}\de_{JK})\).
| ScalarType_ | The scalar type used in the material. |
| using Ikarus::LinearElasticityT< ScalarType_ >::Base = StVenantKirchhoffT<ScalarType> |
| using Ikarus::LinearElasticityT< ScalarType_ >::field_type = ScalarType |
|
inherited |
| using Ikarus::LinearElasticityT< ScalarType_ >::ScalarType = ScalarType_ |
| using Ikarus::LinearElasticityT< ScalarType_ >::StrainMatrix = Eigen::Matrix<ScalarType, worldDimension, worldDimension> |
| using Ikarus::LinearElasticityT< ScalarType_ >::StressMatrix = StrainMatrix |
|
inlineexplicit |
| mpt | The LamesFirstParameterAndShearModulus object. |
|
inlineconstexprinherited |
|
inlineconstexprinherited |
|
inlineconstexprinherited |
|
inlineconstexprnoexcept |
|
inline |
| ScalarTypeOther | The scalar type to rebind to. |
|
inlineinherited |
This function return the free Helmholtz energy of the material
| tag | Strain tag indicating which strain tensor components are passed. |
| Derived | The underlying Eigen type. |
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
| Derived | The underlying Eigen type. |
| E | The strain tensor components. |
|
inlineinherited |
| tag | Strain tag indicating which strain tensor components are passed. |
| voigt | Boolean indicating whether to return Voigt-shaped result. |
| Derived | The underlying Eigen type. |
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
| voigt | Boolean indicating whether to return Voigt-shaped result. |
| Derived | The underlying Eigen type. |
| E | The strain tensor components. |
|
inlineinherited |
| tag | Strain tag indicating which strain tensor components are passed. |
| voigt | Boolean indicating whether to return Voigt-shaped result. |
| Derived | The underlying Eigen type. |
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
| voigt | Boolean indicating whether to return Voigt-shaped result. |
| Derived | The underlying Eigen type. |
| E | The strain tensor components. |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexprinherited |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
| StVenantKirchhoffT<ScalarType> Ikarus::LinearElasticityT< ScalarType_ >::svk |
|
staticconstexpr |
|
staticconstexpr |