Implementation of the Neo-Hookean material model.The energy is computed as. More...
#include <ikarus/finiteelements/mechanics/materials/neohooke.hh>
Public Types | |
| using | ScalarType = ST | 
| using | StrainMatrix = Eigen::Matrix< ScalarType, worldDimension, worldDimension > | 
| using | StressMatrix = StrainMatrix | 
| using | MaterialImpl = NeoHookeT< ST > | 
| Type of material implementation.  More... | |
Public Member Functions | |
| constexpr std::string | nameImpl () const noexcept | 
| NeoHookeT (const LamesFirstParameterAndShearModulus &mpt) | |
| Constructor for NeoHookeT.  More... | |
| template<typename Derived > | |
| ScalarType | storedEnergyImpl (const Eigen::MatrixBase< Derived > &C) const noexcept | 
| Computes the stored energy in the Neo-Hookean material model.  More... | |
| template<bool voigt, typename Derived > | |
| auto | stressesImpl (const Eigen::MatrixBase< Derived > &C) const | 
| Computes the stresses in the Neo-Hookean material model.  More... | |
| template<bool voigt, typename Derived > | |
| auto | tangentModuliImpl (const Eigen::MatrixBase< Derived > &C) const | 
| Computes the tangent moduli in the Neo-Hookean material model.  More... | |
| template<typename STO > | |
| auto | rebind () const | 
| Rebinds the material to a different scalar type.  More... | |
| constexpr const MaterialImpl & | impl () const | 
| Const accessor to the underlying material (CRTP).  More... | |
| constexpr MaterialImpl & | impl () | 
| Accessor to the underlying material (CRTP).  More... | |
| constexpr std::string | name () const | 
| Get the name of the implemented material.  More... | |
| auto | storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Return the stored potential energy of the material.  More... | |
| auto | stresses (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Get the stresses of the material.  More... | |
| auto | tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Get the tangentModuli of the material.  More... | |
Static Public Attributes | |
| static constexpr int | worldDimension = 3 | 
| static constexpr auto | strainTag = StrainTags::rightCauchyGreenTensor | 
| static constexpr auto | stressTag = StressTags::PK2 | 
| static constexpr auto | tangentModuliTag = TangentModuliTags::Material | 
| static constexpr bool | energyAcceptsVoigt = false | 
| static constexpr bool | stressToVoigt = false | 
| static constexpr bool | stressAcceptsVoigt = false | 
| static constexpr bool | moduliToVoigt = false | 
| static constexpr bool | moduliAcceptsVoigt = false | 
| static constexpr double | derivativeFactor = 2 | 
| static constexpr bool | isReduced | 
| Static constant for determining if the material has vanishing stress components (is reduced).  More... | |
\[ \psi(\BC) = \frac{\mu}{2} (\tr \BC-3- 2 \log \sqrt{\det \BC}) + \frac{\lambda}{2} (\log \sqrt{\det \BC})^2 ,\]
where \( \BC \) denotes the right Cauchy-Green strain tensor.
The second Piola-Kirchhoff stresses are computed as
\[ \BS(\BC) =\fracpt{\psi(\BC)}{\BC} = \mu (\BI-\BC^{-1}) + \lambda \log \sqrt{\det \BC} \BC^{-1},\]
and the material tangent moduli are computed as
\[ \BBC(\BC) =\fracpt{^2\psi(\BC)}{\BC^2} = \lambda \BC^{-1} \otimes \BC^{-1} + 2 (\mu- \lambda \log \sqrt{\det \BC} ) \CI,\]
where \( \CI_{IJKL} = \frac{1}{2}({(\BC^{-1})}^{IK}{(\BC^{-1})}^{JL}+{(\BC^{-1})}^{IL} {(\BC^{-1})}^{JK}).\)
| ST | The scalar type for the strains and stresses,.... | 
      
  | 
  inherited | 
| using Ikarus::NeoHookeT< ST >::ScalarType = ST | 
| using Ikarus::NeoHookeT< ST >::StrainMatrix = Eigen::Matrix<ScalarType, worldDimension, worldDimension> | 
| using Ikarus::NeoHookeT< ST >::StressMatrix = StrainMatrix | 
      
  | 
  inlineexplicit | 
| mpt | The Lame's parameters (first parameter and shear modulus). | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexprnoexcept | 
      
  | 
  inline | 
| STO | The target scalar type. | 
      
  | 
  inlineinherited | 
This function return the free Helmholtz energy of the material
| tag | Strain tag indicating which strain tensor components are passed. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inlinenoexcept | 
| Derived | The derived type of the input matrix. | 
| C | The right Cauchy-Green tensor. | 
      
  | 
  inlineinherited | 
| tag | Strain tag indicating which strain tensor components are passed. | 
| voigt | Boolean indicating whether to return Voigt-shaped result. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inline | 
| voigt | A boolean indicating whether to return stresses in Voigt notation. | 
| Derived | The derived type of the input matrix. | 
| C | The right Cauchy-Green tensor. | 
      
  | 
  inlineinherited | 
| tag | Strain tag indicating which strain tensor components are passed. | 
| voigt | Boolean indicating whether to return Voigt-shaped result. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inline | 
| voigt | A boolean indicating whether to return tangent moduli in Voigt notation. | 
| Derived | The derived type of the input matrix. | 
| C | The right Cauchy-Green tensor. | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexprinherited | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr |