Implementation of the Saint Venant-Kirchhoff material model.The energy is computed as. More...
#include <ikarus/finiteelements/mechanics/materials/svk.hh>
Public Types | |
| using | ScalarType = ST | 
| using | StrainMatrix = Eigen::Matrix< ScalarType, worldDimension, worldDimension > | 
| using | StressMatrix = StrainMatrix | 
| using | MaterialImpl = StVenantKirchhoffT< ST > | 
| Type of material implementation.  More... | |
Public Member Functions | |
| constexpr std::string | nameImpl () const | 
| StVenantKirchhoffT (const LamesFirstParameterAndShearModulus &mpt) | |
| Constructor for StVenantKirchhoffT.  More... | |
| template<typename Derived > | |
| ScalarType | storedEnergyImpl (const Eigen::MatrixBase< Derived > &E) const | 
| Computes the stored energy in the Saint Venant-Kirchhoff material model.  More... | |
| template<bool voigt, typename Derived > | |
| auto | stressesImpl (const Eigen::MatrixBase< Derived > &E) const | 
| Computes the stresses in the Saint Venant-Kirchhoff material model.  More... | |
| template<bool voigt, typename Derived > | |
| auto | tangentModuliImpl (const Eigen::MatrixBase< Derived > &E) const | 
| Computes the tangent moduli in the Saint Venant-Kirchhoff material model.  More... | |
| template<typename ScalarTypeOther > | |
| auto | rebind () const | 
| Rebinds the material to a different scalar type.  More... | |
| constexpr const MaterialImpl & | impl () const | 
| Const accessor to the underlying material (CRTP).  More... | |
| constexpr MaterialImpl & | impl () | 
| Accessor to the underlying material (CRTP).  More... | |
| constexpr std::string | name () const | 
| Get the name of the implemented material.  More... | |
| auto | storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Return the stored potential energy of the material.  More... | |
| auto | stresses (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Get the stresses of the material.  More... | |
| auto | tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const | 
| Get the tangentModuli of the material.  More... | |
Static Public Attributes | |
| static constexpr int | worldDimension = 3 | 
| static constexpr auto | strainTag = StrainTags::greenLagrangian | 
| static constexpr auto | stressTag = StressTags::PK2 | 
| static constexpr auto | tangentModuliTag = TangentModuliTags::Material | 
| static constexpr bool | energyAcceptsVoigt = true | 
| static constexpr bool | stressToVoigt = true | 
| static constexpr bool | stressAcceptsVoigt = true | 
| static constexpr bool | moduliToVoigt = true | 
| static constexpr bool | moduliAcceptsVoigt = true | 
| static constexpr double | derivativeFactor = 1 | 
| static constexpr bool | isReduced | 
| Static constant for determining if the material has vanishing stress components (is reduced).  More... | |
\[ \psi(\BE) = \frac{\lambda}{2} (\tr \BE)^2 +\mu \tr (\BE^2) ,\]
where \( \BE \) denotes the Green-Lagrangian strain.
The second Piola-Kirchhoff stresses are computed as
\[ \BS(\BE) =\fracpt{\psi(\BE)}{\BE} = \lambda \tr \BE \BI +2 \mu \BE,\]
and the material tangent moduli are computed as
\[ \BBC(\BE) =\fracpt{^2\psi(\BE)}{\BE^2} = \lambda \tr \BE \CI +2 \mu \CI^{\mathrm{sym}},\]
where \( \CI_{IJKL} = \de_{IJ}\de_{KL}\) and \( \CI_{IJKL}^\mathrm{sym} = \frac{1}{2}(\de_{IK}\de_{JL}+ \de_{IL}\de_{JK})\).
| ST | The scalar type used in the material. | 
      
  | 
  inherited | 
| using Ikarus::StVenantKirchhoffT< ST >::ScalarType = ST | 
| using Ikarus::StVenantKirchhoffT< ST >::StrainMatrix = Eigen::Matrix<ScalarType, worldDimension, worldDimension> | 
| using Ikarus::StVenantKirchhoffT< ST >::StressMatrix = StrainMatrix | 
      
  | 
  inlineexplicit | 
| mpt | The material parameters (Lamé's first parameter and shear modulus). | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexprinherited | 
      
  | 
  inlineconstexpr | 
      
  | 
  inline | 
| ScalarTypeOther | The target scalar type. | 
      
  | 
  inlineinherited | 
This function return the free Helmholtz energy of the material
| tag | Strain tag indicating which strain tensor components are passed. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inline | 
| Derived | The derived type of the input matrix. | 
| E | The Green-Lagrangian strain. | 
      
  | 
  inlineinherited | 
| tag | Strain tag indicating which strain tensor components are passed. | 
| voigt | Boolean indicating whether to return Voigt-shaped result. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inline | 
| voigt | A boolean indicating whether to return stresses in Voigt notation. | 
| Derived | The derived type of the input matrix. | 
| E | The Green-Lagrangian strain. | 
      
  | 
  inlineinherited | 
| tag | Strain tag indicating which strain tensor components are passed. | 
| voigt | Boolean indicating whether to return Voigt-shaped result. | 
| Derived | The underlying Eigen type. | 
| Eraw | The strain tensor components passed in Voigt notation or matrix notation. | 
      
  | 
  inline | 
| voigt | A boolean indicating whether to return tangent moduli in Voigt notation. | 
| Derived | The derived type of the input matrix. | 
| E | The Green-Lagrangian strain. | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexprinherited | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr | 
      
  | 
  staticconstexpr |