25 struct StressIndexPair {
36 template <
size_t size>
37 consteval auto createfreeVoigtIndices(
const std::array<StressIndexPair, size>& fixed) {
38 std::array<size_t, 6 - size> res{};
39 std::array<size_t, size> voigtFixedIndices;
40 std::ranges::transform(fixed, voigtFixedIndices.begin(), [](
auto pair) { return toVoigt(pair.row, pair.col); });
41 std::ranges::sort(voigtFixedIndices);
42 std::ranges::set_difference(std::ranges::iota_view(
size_t(0),
size_t(6)), voigtFixedIndices, res.begin());
43 std::ranges::sort(res);
53 template <
size_t size>
54 consteval auto createFixedVoigtIndices(
const std::array<StressIndexPair, size>& fixed) {
55 std::array<size_t, size> fixedIndices;
56 std::ranges::transform(fixed, fixedIndices.begin(), [](
auto pair) { return toVoigt(pair.row, pair.col); });
57 std::ranges::sort(fixedIndices);
67 template <
size_t size>
68 constexpr size_t countDiagonalIndices(
const std::array<StressIndexPair, size>& fixed) {
70 for (
auto v : fixed) {
71 if (v.col == v.row) ++count;
84 template <auto stressIndexPair,
typename MaterialImpl>
91 explicit VanishingStress(MaterialImpl mat,
typename MaterialImpl::ScalarType p_tol = 1e-12)
92 : matImpl{mat}, tol{p_tol} {}
104 [[nodiscard]]
constexpr std::string
nameImpl() const noexcept {
105 auto matName = matImpl.name() +
"_Vanishing(";
107 matName +=
"(" + std::to_string(p.row) + std::to_string(p.col) +
")";
112 static constexpr auto strainTag = MaterialImpl::strainTag;
113 static constexpr auto stressTag = MaterialImpl::stressTag;
128 template <
typename Derived>
130 const auto [nonOp, Esol] = reduceStress(E);
131 return matImpl.storedEnergyImpl(Esol);
141 template <
bool voigt,
typename Derived>
143 const auto [nonOp, Esol] = reduceStress(E);
144 auto stressesRed = matImpl.template stresses<MaterialImpl::strainTag, true>(Esol);
146 if constexpr (voigt) {
159 template <
bool voigt,
typename Derived>
161 const auto [nonOp, Esol] = reduceStress(E);
162 auto C = matImpl.template tangentModuli<MaterialImpl::strainTag, true>(Esol);
174 template <
typename ScalarTypeOther>
176 auto reboundMatImpl = matImpl.template rebind<ScalarTypeOther>();
187 template <
typename Derived>
188 decltype(
auto) maybeFromVoigt(
const Eigen::MatrixBase<Derived>& E)
const {
200 template <
typename Derived>
201 void initUnknownStrains(Eigen::MatrixBase<Derived>& E)
const {
202 for (
size_t i = 0; i <
fixedPairs.size(); ++i) {
219 template <
typename Derived>
220 auto reduceStress(
const Eigen::MatrixBase<Derived>& p_Eraw)
const {
221 auto E = maybeFromVoigt(p_Eraw);
222 initUnknownStrains(E);
224 std::array<size_t, fixedDiagonalVoigtIndicesSize> fixedDiagonalVoigtIndices;
227 if (indexPair[0] == indexPair[1]) fixedDiagonalVoigtIndices[ri++] = i;
230 auto f = [&](
auto&) {
231 auto S = matImpl.template stresses<MaterialImpl::strainTag, true>(E);
232 return S(fixedDiagonalVoigtIndices).eval();
234 auto df = [&](
auto&) {
235 auto moduli = (matImpl.template tangentModuli<MaterialImpl::strainTag, true>(E)).eval();
236 return (moduli(fixedDiagonalVoigtIndices, fixedDiagonalVoigtIndices) / MaterialImpl::derivativeFactor).eval();
239 auto Er = E(fixedDiagonalVoigtIndices, fixedDiagonalVoigtIndices).eval().template cast<ScalarType>();
242 nonOp, [&](
auto& r,
auto& A) {
return (A.inverse() * r).eval(); },
243 [&](
auto& ,
auto& Ecomps) {
244 for (
int ri = 0;
auto i : fixedDiagonalVoigtIndices) {
246 E(indexPair[0], indexPair[1]) += Ecomps(ri++);
249 nr->setup({.tol = tol, .maxIter = 100});
250 if (!
static_cast<bool>(nr->solve()))
251 DUNE_THROW(Dune::MathError,
"The stress reduction of material " <<
nameImpl() <<
" was unsuccessful\n"
252 <<
"The strains are\n"
253 << E <<
"\n The stresses are\n"
255 return std::make_pair(nonOp, E);
258 MaterialImpl matImpl;
270 template <Impl::StressIndexPair... stressIndexPair,
typename MaterialImpl>
272 return VanishingStress<std::to_array({stressIndexPair...}), MaterialImpl>(mat, p_tol);
282 template <
typename MaterialImpl>
283 auto planeStress(
const MaterialImpl& mat,
typename MaterialImpl::ScalarType p_tol = 1e-8) {
284 return makeVanishingStress<Impl::StressIndexPair{2, 1}, Impl::StressIndexPair{2, 0}, Impl::StressIndexPair{2, 2}>(
296 template <
typename MaterialImpl>
297 auto shellMaterial(
const MaterialImpl& mat,
typename MaterialImpl::ScalarType p_tol = 1e-8) {
309 template <
typename MaterialImpl>
310 auto beamMaterial(
const MaterialImpl& mat,
typename MaterialImpl::ScalarType p_tol = 1e-8) {
311 return makeVanishingStress<Impl::StressIndexPair{1, 1}, Impl::StressIndexPair{2, 2}>(mat, p_tol);
Provides a NonLinearOperator class for handling nonlinear operators.
Contains the Material interface class and related template functions for material properties.
Implementation of the Newton-Raphson method for solving nonlinear equations.
auto staticCondensation(const Eigen::MatrixBase< Derived > &E, const std::array< size_t, sizeOfCondensedIndices > &indices)
Performs static condensation on a square matrix.
Definition: linearalgebrahelper.hh:495
auto removeCol(const Eigen::MatrixBase< Derived > &E, const std::array< size_t, sizeOfRemovedCols > &indices)
Removes specified columns from a matrix.
Definition: linearalgebrahelper.hh:523
auto fromVoigt(const Eigen::Vector< ST, size > &EVoigt, bool isStrain=true)
Converts a vector given in Voigt notation to a matrix.
Definition: tensorutils.hh:256
Definition: simpleassemblers.hh:21
auto makeVanishingStress(MaterialImpl mat, typename MaterialImpl::ScalarType p_tol=1e-12)
Factory function to create a VanishingStress material with specified stress indices.
Definition: vanishingstress.hh:271
auto makeNewtonRaphson(const NonLinearOperatorImpl &p_nonLinearOperator, LinearSolver &&p_linearSolver={}, UpdateFunctionType &&p_updateFunction={})
Function to create a NewtonRaphson solver instance.
Definition: newtonraphson.hh:156
auto shellMaterial(const MaterialImpl &mat, typename MaterialImpl::ScalarType p_tol=1e-8)
Factory function to create a VanishingStress material for a shell material with zero normal stress co...
Definition: vanishingstress.hh:297
auto planeStress(const MaterialImpl &mat, typename MaterialImpl::ScalarType p_tol=1e-8)
Factory function to create a VanishingStress material for plane stress conditions.
Definition: vanishingstress.hh:283
auto beamMaterial(const MaterialImpl &mat, typename MaterialImpl::ScalarType p_tol=1e-8)
Factory function to create a VanishingStress material for a beam material with two zero normal stress...
Definition: vanishingstress.hh:310
auto functions(Args &&... args)
Creates a Functions object.
Definition: nonlinearoperator.hh:126
auto parameter(Args &&... args)
Creates a Parameter object.
Definition: nonlinearoperator.hh:114
Interface classf or materials.
Definition: interface.hh:75
VanishingStress material model that enforces stress components to be zero.
Definition: vanishingstress.hh:85
typename MaterialImpl::ScalarType ScalarType
Scalar type.
Definition: vanishingstress.hh:102
auto stressesImpl(const Eigen::MatrixBase< Derived > &E) const
Computes the stresses for the VanishingStress material.
Definition: vanishingstress.hh:142
static constexpr auto strainTag
Strain tag.
Definition: vanishingstress.hh:112
static constexpr auto fixedVoigtIndices
Fixed Voigt indices.
Definition: vanishingstress.hh:98
static constexpr auto stressTag
Stress tag.
Definition: vanishingstress.hh:113
static constexpr bool stressToVoigt
Stress to Voigt notation.
Definition: vanishingstress.hh:116
static constexpr auto freeVoigtIndices
Free Voigt indices.
Definition: vanishingstress.hh:97
constexpr std::string nameImpl() const noexcept
Definition: vanishingstress.hh:104
static constexpr auto freeStrains
Number of free strains.
Definition: vanishingstress.hh:101
static constexpr auto fixedDiagonalVoigtIndicesSize
Number of fixed diagonal indices.
Definition: vanishingstress.hh:100
auto tangentModuliImpl(const Eigen::MatrixBase< Derived > &E) const
Computes the tangent moduli for the VanishingStress material.
Definition: vanishingstress.hh:160
static constexpr bool moduliAcceptsVoigt
Moduli accepts Voigt notation.
Definition: vanishingstress.hh:119
static constexpr bool energyAcceptsVoigt
Energy accepts Voigt notation.
Definition: vanishingstress.hh:115
static constexpr auto fixedPairs
Array of fixed stress components.
Definition: vanishingstress.hh:96
static constexpr double derivativeFactor
Derivative factor.
Definition: vanishingstress.hh:120
VanishingStress(MaterialImpl mat, typename MaterialImpl::ScalarType p_tol=1e-12)
Constructor for VanishingStress.
Definition: vanishingstress.hh:91
ScalarType storedEnergyImpl(const Eigen::MatrixBase< Derived > &E) const
Computes the stored energy for the VanishingStress material.
Definition: vanishingstress.hh:129
static constexpr bool moduliToVoigt
Moduli to Voigt notation.
Definition: vanishingstress.hh:118
auto rebind() const
Rebinds the material to a different scalar type.
Definition: vanishingstress.hh:175
static constexpr auto tangentModuliTag
Tangent moduli tag.
Definition: vanishingstress.hh:114
static constexpr bool stressAcceptsVoigt
Stress accepts Voigt notation.
Definition: vanishingstress.hh:117
MaterialImpl Underlying
The underlying material type.
Definition: vanishingstress.hh:94
Represents a NonLinearOperator class for handling nonlinear operators.
Definition: nonlinearoperator.hh:154
Concept defining the requirements for Eigen vectors.
Definition: concepts.hh:381