version 0.4
Ikarus::Material< MaterialImpl > Struct Template Reference

Interface classf or materials. More...

#include <ikarus/finiteelements/mechanics/materials/interface.hh>

Inheritance diagram for Ikarus::Material< MaterialImpl >:
[legend]

Public Types

using MaterialImplType = MaterialImpl
 Type of material implementation. More...
 

Public Member Functions

constexpr const MaterialImpl & impl () const
 Const accessor to the underlying material (CRTP). More...
 
constexpr MaterialImpl & impl ()
 Accessor to the underlying material (CRTP). More...
 
constexpr std::string name () const
 Get the name of the implemented material. More...
 
template<StrainTags tag, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const
 Return the stored potential energy of the material. More...
 
template<StrainTags tag, bool voigt = true, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto stresses (const Eigen::MatrixBase< Derived > &Eraw) const
 Get the stresses of the material. More...
 
template<StrainTags tag, bool voigt = true, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const
 Get the tangentModuli of the material. More...
 
template<typename ScalarTypeOther >
auto rebind () const
 Rebind material to a different scalar type. More...
 

Static Public Attributes

static constexpr bool isReduced = traits::isSpecializationNonTypeAndTypes<VanishingStress, MaterialImpl>::value
 Static constant for determining if the material has vanishing stress components (is reduced). More...
 

Detailed Description

template<class MaterialImpl>
struct Ikarus::Material< MaterialImpl >

Consider a hyper elastic material with the free Helmholtz energy

\[\require{cases}\psi: \begin{cases}\mathbb{R}^{3\times 3} &\rightarrow \mathbb{R} \\ \BC &\mapsto \psi(\BC) \end{cases}.\]

Then, the value of this potential energy is return by storedEnergy and its first derivative (the stresses) by stresses and the second derivatives (the tangent moduli) by tangentModuli .

The passed strains can be in several formats, i.e., \(\BC\) can be the right Cauchy-Green tensor, the deformation gradient \(\mathbf{F}\) or linear strains. The current supported tags are given by Ikarus::StrainTags.

Template Parameters
MaterialImplType of the underlying material implementation.

Member Typedef Documentation

◆ MaterialImplType

template<class MaterialImpl >
using Ikarus::Material< MaterialImpl >::MaterialImplType = MaterialImpl

Member Function Documentation

◆ impl() [1/2]

template<class MaterialImpl >
constexpr MaterialImpl & Ikarus::Material< MaterialImpl >::impl ( )
inlineconstexpr
Returns
Reference to the underlying material.

◆ impl() [2/2]

template<class MaterialImpl >
constexpr const MaterialImpl & Ikarus::Material< MaterialImpl >::impl ( ) const
inlineconstexpr
Returns
Const reference to the underlying material.
Here is the caller graph for this function:

◆ name()

template<class MaterialImpl >
constexpr std::string Ikarus::Material< MaterialImpl >::name ( ) const
inlineconstexpr
Returns
Name of the material.

◆ rebind()

template<class MaterialImpl >
template<typename ScalarTypeOther >
auto Ikarus::Material< MaterialImpl >::rebind ( ) const
inline

Useful for using automatic differentiation.

Template Parameters
ScalarTypeOtherThe scalar type to rebind to.
Returns
Rebound material.

◆ storedEnergy()

template<class MaterialImpl >
template<StrainTags tag, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto Ikarus::Material< MaterialImpl >::storedEnergy ( const Eigen::MatrixBase< Derived > &  Eraw) const
inline

This function return the free Helmholtz energy of the material

Template Parameters
tagStrain tag indicating which strain tensor components are passed.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Scalar return of stored energy.

◆ stresses()

template<class MaterialImpl >
template<StrainTags tag, bool voigt = true, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto Ikarus::Material< MaterialImpl >::stresses ( const Eigen::MatrixBase< Derived > &  Eraw) const
inline
Template Parameters
tagStrain tag indicating which strain tensor components are passed.
voigtBoolean indicating whether to return Voigt-shaped result.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Vectorial or Matrix return of stresses.

◆ tangentModuli()

template<class MaterialImpl >
template<StrainTags tag, bool voigt = true, typename Derived >
requires CorrectStrainSize<MaterialImpl, Derived>
auto Ikarus::Material< MaterialImpl >::tangentModuli ( const Eigen::MatrixBase< Derived > &  Eraw) const
inline
Template Parameters
tagStrain tag indicating which strain tensor components are passed.
voigtBoolean indicating whether to return Voigt-shaped result.
DerivedThe underlying Eigen type.
Parameters
ErawThe strain tensor components passed in Voigt notation or matrix notation.
Returns
Tangent moduli in Voigt notation or as fourth-order tensor.

Member Data Documentation

◆ isReduced

template<class MaterialImpl >
constexpr bool Ikarus::Material< MaterialImpl >::isReduced = traits::isSpecializationNonTypeAndTypes<VanishingStress, MaterialImpl>::value
staticconstexpr

The documentation for this struct was generated from the following file: