Implementation of the Linear Elasticity material model.The energy is computed as. More...
#include <ikarus/finiteelements/mechanics/materials/linearelasticity.hh>
Public Types | |
using | ScalarType = ScalarType_ |
using | Base = StVenantKirchhoffT< ScalarType > |
using | field_type = ScalarType |
using | StrainMatrix = Eigen::Matrix< ScalarType, worldDimension, worldDimension > |
using | StressMatrix = StrainMatrix |
using | MaterialImplType = LinearElasticityT< ScalarType_ > |
Type of material implementation. More... | |
Public Member Functions | |
constexpr std::string | nameImpl () const noexcept |
LinearElasticityT (const LamesFirstParameterAndShearModulus &mpt) | |
Constructor for LinearElasticityT. More... | |
template<typename Derived > | |
ScalarType | storedEnergyImpl (const Eigen::MatrixBase< Derived > &E) const |
Calculates the stored energy in the material. More... | |
template<bool voigt, typename Derived > | |
auto | stressesImpl (const Eigen::MatrixBase< Derived > &E) const |
Calculates the stresses in the material. More... | |
template<bool voigt, typename Derived > | |
auto | tangentModuliImpl (const Eigen::MatrixBase< Derived > &E) const |
Calculates the tangent moduli in the material. More... | |
template<typename ScalarTypeOther > | |
auto | rebind () const |
Rebind material to a different scalar type. More... | |
constexpr const LinearElasticityT< ScalarType_ > & | impl () const |
Const accessor to the underlying material (CRTP). More... | |
constexpr LinearElasticityT< ScalarType_ > & | impl () |
Accessor to the underlying material (CRTP). More... | |
constexpr std::string | name () const |
Get the name of the implemented material. More... | |
auto | storedEnergy (const Eigen::MatrixBase< Derived > &Eraw) const |
Return the stored potential energy of the material. More... | |
auto | stresses (const Eigen::MatrixBase< Derived > &Eraw) const |
Get the stresses of the material. More... | |
auto | tangentModuli (const Eigen::MatrixBase< Derived > &Eraw) const |
Get the tangentModuli of the material. More... | |
Public Attributes | |
StVenantKirchhoffT< ScalarType > | svk |
Static Public Attributes | |
static constexpr int | worldDimension = 3 |
static constexpr auto | strainTag = StrainTags::linear |
static constexpr auto | stressTag = StressTags::linear |
static constexpr auto | tangentModuliTag = TangentModuliTags::Material |
static constexpr bool | energyAcceptsVoigt = Base::energyAcceptsVoigt |
static constexpr bool | stressToVoigt = Base::stressToVoigt |
static constexpr bool | stressAcceptsVoigt = Base::stressAcceptsVoigt |
static constexpr bool | moduliToVoigt = Base::moduliToVoigt |
static constexpr bool | moduliAcceptsVoigt = Base::moduliAcceptsVoigt |
static constexpr double | derivativeFactor = 1 |
static constexpr bool | isReduced |
Static constant for determining if the material has vanishing stress components (is reduced). More... | |
\[ \psi(\Bvep) = \frac{\lambda}{2} (\tr \Bvep)^2 +\mu \tr (\Bvep^2) ,\]
where \( \Bvep \) denotes the linear strain tensor.
The second Piola-Kirchhoff stresses are computed as
\[ \BS(\Bvep) =\fracpt{\psi(\Bvep)}{\Bvep} = \lambda \tr \Bvep \BI +2 \mu \Bvep,\]
and the material tangent moduli are computed as
\[ \BBC(\Bvep) =\fracpt{^2\psi(\Bvep)}{\Bvep^2} = \lambda \tr \Bvep \CI +2 \mu \CI^{\mathrm{sym}},\]
where \( \CI_{IJKL} = \de_{IJ}\de_{KL}\) and \( \CI_{IJKL}^\mathrm{sym} = \frac{1}{2}(\de_{IK}\de_{JL}+ \de_{IL}\de_{JK})\).
ScalarType_ | The scalar type used in the material. |
using Ikarus::LinearElasticityT< ScalarType_ >::Base = StVenantKirchhoffT<ScalarType> |
using Ikarus::LinearElasticityT< ScalarType_ >::field_type = ScalarType |
|
inherited |
using Ikarus::LinearElasticityT< ScalarType_ >::ScalarType = ScalarType_ |
using Ikarus::LinearElasticityT< ScalarType_ >::StrainMatrix = Eigen::Matrix<ScalarType, worldDimension, worldDimension> |
using Ikarus::LinearElasticityT< ScalarType_ >::StressMatrix = StrainMatrix |
|
inlineexplicit |
mpt | The LamesFirstParameterAndShearModulus object. |
|
inlineconstexprinherited |
|
inlineconstexprinherited |
|
inlineconstexprinherited |
|
inlineconstexprnoexcept |
|
inline |
ScalarTypeOther | The scalar type to rebind to. |
|
inlineinherited |
This function return the free Helmholtz energy of the material
tag | Strain tag indicating which strain tensor components are passed. |
Derived | The underlying Eigen type. |
Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
Derived | The underlying Eigen type. |
E | The strain tensor components. |
|
inlineinherited |
tag | Strain tag indicating which strain tensor components are passed. |
voigt | Boolean indicating whether to return Voigt-shaped result. |
Derived | The underlying Eigen type. |
Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
voigt | Boolean indicating whether to return Voigt-shaped result. |
Derived | The underlying Eigen type. |
E | The strain tensor components. |
|
inlineinherited |
tag | Strain tag indicating which strain tensor components are passed. |
voigt | Boolean indicating whether to return Voigt-shaped result. |
Derived | The underlying Eigen type. |
Eraw | The strain tensor components passed in Voigt notation or matrix notation. |
|
inline |
voigt | Boolean indicating whether to return Voigt-shaped result. |
Derived | The underlying Eigen type. |
E | The strain tensor components. |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexprinherited |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
StVenantKirchhoffT<ScalarType> Ikarus::LinearElasticityT< ScalarType_ >::svk |
|
staticconstexpr |
|
staticconstexpr |